Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Точность методов Монте-Карло. Пусть в задаче приближенного вычисления неизвестной величины по методу Монте-Карло со случайной величиной ( и вектором независимых случайных величин⇐ ПредыдущаяСтр 60 из 60
Пусть в задаче приближенного вычисления неизвестной величины по методу Монте-Карло со случайной величиной ( и вектором независимых случайных величин ставится дополнительное условие о том, что вычисленное значение должно отличаться от на малую величину с вероятностью не меньше заданной (близкой к 1). Каким образом следует выбирать число суммируемых величин для удовлетворения дополнительного условия? Формально дополнительное условие имеет вид: . Для оценки количества требуется вычислить вероятность в левой части неравенства, и для вычисления в некоторых случаях допустимо использовать независимость величин и асимптотическую нормальность суммы: при , где , . Таким образом, , Откуда, , , ,
Если дисперсия может быть вычислена аналитически, тогда из (10.4) можно определить число . Если же дисперсию не удается вычислить аналитически, то допустимо использовать верхнюю оценку , , вместо дисперсии в (10.4). В некоторых случаях в (10.4) вместо дисперсии используют выборочную дисперсию: , где . Из соотношения (10.4) следует: а) количество требуемых испытаний прямо пропорционально дисперсии , поэтому следует стараться выбрать величину таким образом, чтобы дисперсия оказалась как можно меньше (при условии, что ). б) при увеличении точности в 10 раз () требуемое количество слагаемых возрастает в 100 раз.
|