Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Точность методов Монте-Карло. Пусть в задаче приближенного вычисления неизвестной величины по методу Монте-Карло со случайной величиной ( и вектором независимых случайных величин






    Пусть в задаче приближенного вычисления неизвестной величины по методу Монте-Карло со случайной величиной ( и вектором независимых случайных величин ставится дополнительное условие о том, что вычисленное значение должно отличаться от на малую величину с вероятностью не меньше заданной (близкой к 1). Каким образом следует выбирать число суммируемых величин для удовлетворения дополнительного условия?

    Формально дополнительное условие имеет вид:

    .

    Для оценки количества требуется вычислить вероятность в левой части неравенства, и для вычисления в некоторых случаях допустимо использовать независимость величин и асимптотическую нормальность суммы:

    при ,

    где

    ,

    .

    Таким образом,

    ,

    Откуда,

    ,

    ,

    ,

    . (10.4)

    Если дисперсия может быть вычислена аналитически, тогда из (10.4) можно определить число . Если же дисперсию не удается вычислить аналитически, то допустимо использовать верхнюю оценку , , вместо дисперсии в (10.4). В некоторых случаях в (10.4) вместо дисперсии используют выборочную дисперсию:

    ,

    где .

    Из соотношения (10.4) следует:

    а) количество требуемых испытаний прямо пропорционально дисперсии , поэтому следует стараться выбрать величину таким образом, чтобы дисперсия оказалась как можно меньше (при условии, что ).

    б) при увеличении точности в 10 раз () требуемое количество слагаемых возрастает в 100 раз.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.