Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Определение характеристик сложных случайных величин.






    Пусть – совокупность случайных величин с плотностью вероятности , для которой известен метод получения реализаций, – некоторая известная функция и для случайной величины требуется определить какие-либо характеристики, например, значение функции распределения в некоторой точке или моменты.

    Значение функции распределения случайной величины в точке определяется интегралом:

    ,

    где – плотность вероятности вектора . В общем случае, аналитическое вычисление кратного интеграла по области может представлять определенные трудности, поэтому для приближенного вычисления используются методы статистических испытаний.

    На основе случайного вектора образуем случайную величину:

    .

    Легко видеть, что математическое ожидание :

    совпадает с неизвестной величиной , подлежащей определению. Пусть , …, – совокупность независимых случайных векторов, определим совокупность случайных величин , …, ,

    тогда:

    .

    Заметим, что величина совпадает с величиной эмпирической функции распределения в точке (величины ).

    Предположим, требуется вычислить математическое ожидание , где заданная функция (например, , тогда – математическое ожидание , или , тогда – дисперсия ). Определим случайную величину:

    ,

    тогда . Пусть , …, – совокупность независимых случайных векторов, определим совокупность случайных величин , …, :

    ,

    тогда,

    .

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.