Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Метод получения векторных случайных величин с распределением .
Пусть методом, представленным выше, получены случайные величины , …, , которые имеют распределение и некоррелированы (или коэффициенты корреляции настолько малы, что ими можно пренебречь). Будем считать, что вектор имеет нормальное распределение , где – нулевой вектор порядка и – единичная матрица порядка . Образуем вектор с помощью линейного преобразования вектора :
,
где – некоторая матрица порядка . Вектор имеет нормальное распределение, поскольку получен с помощью линейного преобразования вектора , имеющего нормальное распределение. Математическое ожидание :
.
Остается лишь выбрать матрицу таким образом, чтобы дисперсионная матрица вектора оказалась равной заданной матрице . По свойству дисперсионной матрицы:
,
откуда следует, что матрица должна удовлетворять равенству:
.
Ковариационная матрица всегда симметрична и в некоторых случаях положительно определена, для таких матриц существует матрица , удовлетворяющая , причем матрицу можно сделать нижнетреугольной (для эффективной организации вычислений).
В частности для получения вектора с распределением , где – коэффициент корреляции, , , достаточно выполнить следующее преобразование:
.
|