Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Утверждение 2.1.






    Пусть – наблюдения, и статистика является несмещенной оценкой величины , причем дисперсии конечны и стремятся к нулю с ростом :

    ,

    ,

    ,

    тогда является состоятельной оценкой .

     

    Задача точечного оценивания вероятности события, построение оценки и свойства оценки. Задача точечного оценивания значений функции распределения, построение оценки и свойства оценки.

     

    Пусть выборка из распределения с неизвестным параметром , и некоторое фиксированное числовое значение, требуется построить оценку значения функции распределения – неизвестной величины (неизвестной в силу того, что параметр неизвестен) и исследовать свойства несмещенности и состоятельности построенной оценки.

    Предположим, что в качестве оценки неизвестной величины вероятности используется значение эмпирической функции распределения ,

    ,

    где согласно определению эмпирической функции распределения 1.6 функция равна случайной величине количества случайных величин выборки меньших . Заметим, что функцию можно представить в виде суммы значений индикаторных функций от случайных величин выборки:

    ,

    где () принимает значение 1 если и 0 в противном случае. Таким образом, каждая величина является случайной величиной, принимающей лишь два значения: 1 с вероятностью и 0 с вероятностью :

    .

    Поскольку выборка из распределения , то в соответствии с определением выборки 1.1, все случайные величины имеют функцию распределения , отсюда следует, что ,

    Таким образом, окончательно статистика имеет вид:

    (2.1)

    где - случайные величины,

    .

    Исследуем свойства оценки (2.1), покажем, что статистика (2.1) является несмещенной оценкой , действительно, по свойству математического ожидания,

    .

    Для исследования свойства состоятельности оценки достаточно вспомнить теорему о сходимости по вероятности значений эмпирической функции распределения к значениям при всяком фиксированном . Поскольку оценка в точности совпадает с , то очевидно сходится по вероятности к при и, следовательно, является состоятельной.

     

    Задача точечного оценивания математического ожидания и дисперсии. Понятие о выборочном среднем, выборочной дисперсии и исправленной выборочной. Несмещенность и состоятельность выборочного среднего, выборочной дисперсии и исправленной выборочной дисперсии (без вывода формулы дисперсии выборочной дисперсии).

     

    Пусть выборка из распределения с неизвестным параметром , требуется построить оценки первого начального момента (математического ожидания) и второго центрального момента (дисперсии) (при условии, что указанные моменты конечны):

    ,

    и исследовать свойства построенных оценок.

    Для построения оценок воспользуемся определениями моментов, приведенными выше, в которых неизвестную функцию распределения заменим известным «приближением» – эмпирической функцией распределения :

    ,

    .

    Поскольку является ступенчатой функцией, с разрывами величины в точках (), то в результате вычисления интегралов получим следующие статистики:

    (2.2)
    (2.3)





    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.