![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закономерности поведения последовательных отклонений
Первый крайний случай
Другой крайний случай
Рис.5.6. Случай отрицательной автокорреляции остатков первого порядка Типичный вид данных наблюдений при наличии отрицательной автокорреляции остатков первого порядка показан на рис.5.7.
Рис.5.7. Вид данных наблюдений при отрицательной автокорреляции остатков первого порядка
Наконец, если характер поведения отклонений случаен, можно предположить, что в половине случаев знак последовательных отклонений совпадает, а в половине – различен. Поскольку абсолютная величина их в среднем предполагается одинаковой, можно считать, что здесь в половине случаев
Это показывает, что близость статистики Дарбина-Уотсона к двум является необходимым условием случайного характера отклонений от линии регрессии. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
Нужно, однако, иметь ввиду, что в DW -статистике сравниваются только соседние отклонения от регрессии, в то же время циклы изменения экономических переменных могут быть более или менее длительными, чем одна единица времени. Например, если рассматриваются поквартальные данные сельскохозяйственного производства (имеющего годовой цикл) и оценивается их линейная регрессия от времени, статистика Дарбина-Уотсона может быть близкой к двум при выраженной регулярности отклонений зависимой переменной от линии регрессии.
Вывод. Если статистика Дарбина-Уотсона близка к двум, мы считаем отклонения от регрессии случайными (хотя в действительности они могут и не быть таковыми). Это означает, что линейная функция, вероятно, отражает реальную взаимосвязь; скорее всего, не осталось существенных неучтенных факторов, влияющих на зависимую переменную, и какая-либо другая, нелинейная формула не превосходит по статистическим характеристикам данную линейную. Даже если доля дисперсии зависимой переменной, объясненной с помощью регрессии, при этом мала, можно ожидать, что другая часть этой дисперсии, оставшаяся необъясненной, порождена действием множества различных малых факторов и может быть описана как случайная нормальная ошибка.
Но как определить, достаточно ли близка величина DW -статистики к двум? Рассмотрим содержание теста Дарбина-Уотсона.
|