Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Парабола
Параболой называется множество всех точек плоскости, каждая из которых равноудалена от заданной точки, называемой фокусом и заданной прямой, называемой директрисой.
Каноническое уравнение параболы имеет вид , (51)
где число , равное расстоянию от фокуса до директрисы , называется параметром параболы. Координаты фокуса . Точка называется вершиной параболы, длина отрезка - фокальный радиус точки , ось - ось симметрии параболы.

Рисунок 69 Рисунок 70
Уравнение директрисы параболы имеет вид ;
фокальный радиус вычисляется по формуле .
В прямоугольной системе координат парабола, заданная каноническим уравнением , расположена так, как указано на рисунке 69.
Замечания.
1) Парабола, симметричная относительно оси и проходящая через точку (рисунок 70), имеет уравнение (52)
Уравнение директрисы: , фокальный радиус точки параболы .

Рисунок 71 Рисунок 72
(53) (54)
3) На рисунках 73 – 76 приведены графики парабол с осями симметрии, параллельными координатным осям.


Рисунок 73 Рисунок 74

Рисунок 75 Рисунок 76
|