Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Если стороны прямоугольного треугольника измерены одной и той же единицей, то квадрат длины гипотенузы равен сумме квадратов длин катетов.






    Пусть ABC (рис.9) есть прямоугольный треугольник, AD — перпендикуляр, опущенный на гипотенузу из вершины прямого угла.

    Положим, что стороны и отрезки гипотенузы измерены одной и той же единицей, причём получились числа а, b, с, с' и b' (принято длины сторон треугольника обозначать малыми буквами, соответствующими большим буквам, которыми обозначены противолежащие углы). Применяя теорему*, можем написать пропорции:

    а: с = с: с' и а: b = b: b',

    откуда

    ас' = с 2 и ab' = b 2.

    Сложив почленно эти два равенства, найдём:

    ас' + ab' = с 2 + b 2, или а (с' + b') = с 2 + b 2.

    Но с' + b' = а, следовательно,

    a 2 = с 2 + b 2.

    Эту теорему обыкновенно выражают сокращённо так: квадрат гипотенузы равен сумме квадратов катетов.

    Теорема Пифагора имеет ещё другую формулировку: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

    Замечание. Прямоугольный треугольник со сторонами 3, 4 и 5 называется часто египетским треугольником, так как он был известен ещё древним египтянам. Так, их землемеры для построения прямого угла на земной поверхности пользовались таким приёмов: бечёвку посредством узлов они разделяли на 12 равных частей; затем, связав концы, натягивали её на земле (посредством кольев) в виде треугольника со сторонами в 3, 4 и 5 делений; тогда угол между сторонами, равными 3 и 4, оказывался прямым.
    Прямоугольные треугольники, у которых стороны измеряются целыми числами, носят название пифагоровых треугольников. Можно доказать, что катеты х и у и гипотенуза z таких треугольников выражаются следующими формулами:

    х = 2 ab, у = а 2 — b 2, z = а 2 + b 2,

    где a и b — произвольные целые числа при условии, что а > b.

    Следствие. Квадраты катетов относятся между собой, как прилежащие отрезки гипотенузы. Действительно, из уравнений предыдущего параграфа находим:

    c 2: b 2 = ac': ab' = с': b'

    Замечание. К трём равенствам, которые мы вывели выше:

    1) ас' = с 2; 2) ab' = b 2 и 3) a 2 = с 2 + b 2,

    можно присоединить ещё следующие два:

    4) b' + с' = а и 5) h 2 = b'с' '

    (если буквой h обозначим длину высоты AD). Из этих равенств третье, как мы видели, составляет следствие первых двух и четвёртого, так что из пяти равенств только четыре независимы; вследствие этого можно по данным двум из шести чисел находить остальные четыре.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.