Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Основные определения. Изложение теории геометрических преобразований начнём с общих определений.
Изложение теории геометрических преобразований начнём с общих определений. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется равенство = к, где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры Р. Число k называется коэффициентом подобия фигур F и F1. Если простыми словами, то подобием плоскости называется ее преобразование, при котором все расстояния между точками умножаются на одно и то же положительное число. Это число k называется коэффициентом подобия. На рисунке 1 представлен способ построения фигуры F1, подобной данной фигуре F. Каждой точке М фигуры F сопоставляется точка М1 плоскости так, что точки М и М1 лежат на луче с началом в некоторой фиксированной точке О, причем ОМ=к-ОМ1 (на рисунке 1 к= 1/3). В результате такого сопоставления получается фигура F1, подобная фигуре F. В этом случае фигуры F и F1 называются центральноподобными. Примерами подобных четырехугольников являются любые два квадрата, а также два прямоугольника, у которых две смежные стороны одного пропорциональны двум смежным сторонам другого (рис. 2, б). Примерами подобных фигур произвольной формы являются две географические карты одного и того же района, выполненные в разных масштабах, а также фотографии одного и того же предмета, сделанные в разных увеличениях.
|