Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Подобные треугольники
Введем понятие подобных треугольников. Пусть у двух треугольников АВС и А1В1С1 углы соответственно равны: А=А1, В=В1, С=С1. В этом случае стороны АВ и А1В1, ВС и B1С1, СА и С1А1 называются сходственными (рис. 4). Определение Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Другими словами, два треугольника подобны, если для них можно ввести обозначения АВС и А1В1С1 так, что А=А1, В=В1, С=С1 (1) (2) Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. Подобие треугольников АВС и А1В1С1 обозначается так: ∆ АВС ~ ∆ А1В1С1 На рисунке 4 изображены подобные треугольники. Оказывается, что подобие треугольников можно установить, проверив только некоторые из равенств (1) и (2). Рассмотрим три признака подобия треугольников.
|