Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Тема 6. Автоколебательные системы с одной степенью свободы






    Конструкция, которая генерирует колебания без внешнего воздействия, называется автоколебательной системой. Автоколебательные системы являются автономными (на них нет воздействия), а также активными (генерируют энергию). Колебательный процесс всегда периодический, а это значит, что полная колебательная энергия системы N = T + V (здесь Т - кинетическая энергия) является периодической функцией времени, т. е. N (t + nT) = N (t) (здесь Т - период колебаний). С другой стороны, в системе действует диссипация, тогда из известного уравнения (1.35)

    ,

    где F (t) - функция, характеризующая диссипативные свойства системы, причём для диссипативных систем F (t) > 0. Также для F (t), исходя из предыдущего равенства и периодичности функции N, справедливо

    . (6.1)

    Но так как для автономных диссипативных систем функция F (t) всегда положительна (а интеграл от всегда положительной функции не может быть равен нулю), то это значит, что в автономных диссипативных системах устойчивые автоколебания невозможны, т. е. всегда требуется подкачка энергии. Например, если рассмотреть простейший последовательный RLC колебательный контур, то функция диссипации будет F (t) = R (i) i 2. Таким образом, чтобы возникли устойчивые колебания, необходимо, чтобы значение R (i) хотя бы на каких-то участках было отрицательным.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.