Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Парабола
Определение- множество точек плоскости, каждая из которых равно удалена от данной точки F, называемой фокусом, и данной прямой называемой директрисой-парабола. Используем определение и получим ур-е параболы: Через данную точку F проведем прямую перпендикулярную в данной Директрисе DD’ и направленной от директрисы к фокусу. Примем эту прямую За ось Ox. Расстояние от директрисы до фокуса равно P (AF=P, P> 0). P-параметр параболы. Середину отрезка A примем за начало координат и проведем через эту точку ось Oy. Фокус имеет координаты F(P/2; 0). Берем произвольную точку M(x, y) и опускаем перпендикуляр на директрису, т.е Будет иметь координаты С(-p/2; y). По определению параболы MC=MF Найдем расстояние между точками М(x, y) и С(-p/2; y); M(x, y) и F(p/2; 0)/ Учитываем определение - уравнение параболы. Возведем обе части в квадрат = Окончательно получаем , т.к оно второй степени., то это кривая второго порядка.
|