Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Работа сил электрического поля. Циркуляция вектора напряженности






    При перемещении зарядов в электрическом поле силы, приложенные к зарядам, совершают работу. Выясним, от чего зависит эта работа. Рассмотрим положительный точечный заряд q0, который перемещается в поле заряда q из точки 1 в точку 2 (рис. 1.12). Для того, чтобы определить работу на всем конечном перемещении 1 - 2, разобьем его на бесконечно малые перемещения dl. Элементарная работ, совершаемая на данном перемещении силой Кулона F, равна

    ,

    где dr – элементарное изменение расстояния между зарядами (длины радиус-вектора r). Полная работа на пути 1 - 2 равна

    ,

    взяв данный интеграл, получим

    . 1. 24)

    Из уравнения (1. 24) следует, что работа в электрическом поле не зависит от формы пути и определяется только относительными положениями зарядов q и q0 в начале и конце пути. Отсюда, в частности, следует, что работа по перемещению заряда q0 по замкнутому контуру равна нулю. Следовательно, электрическое поле является потенциальным. Условие потенциальности поля можно записать в другой форме. Очевидно, что

    ,

    где Е – вектор поля, создаваемого зарядом q (рис. 1.12). Так как работа по замкнутому контуру L , то

    . (1. 25)

    Выражение называется циркуляцией вектора напряженности по контуру L. (рис. 1.13).

    Таким образом, условие потенциальности электрического поля неподвижных зарядов выражается уравнением (1. 25): циркуляция вектора напряженности по любому замкнутому контуру равна нулю.

    Подчеркнем, что уравнение (1. 25) несправедливо, если заряды, создающие поле, движутся.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.