Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Метод неопределенных коэффициентов для решения неоднородных дифференциальных уравнений высших порядков. Специальный вид правой части.
Если правая часть f(x) дифференциального уравнения представляет собой функцию вида где Pn(x), Qm(x) − многочлены степени n и m, соответственно, то для построения частного решения можно использовать метод неопределенных коэффициентов. В этом случае мы ищем частное решение в форме, соответствующей структуре правой части уравнения. Так, например, для функции частное решение имеет вид где An(x) − многочлен той же степени n, как и Pn(x). Коэффициенты многочлена An(x) определяются прямой подстановкой пробного решения y1(x) в неоднородное дифференциальное уравнение. В так называемом резонансном случае, когда число α в показательной функции совпадает с корнем характеристического уравнения, в частном решении появляется дополнительный множитель xs, где s равно кратности корня. В нерезонансном случае полагают s = 0. Такой же алгоритм применяется, когда правая часть уравнения задана в виде Здесь частное решение имеет аналогичную структуру и записывается как где An(x), Bn(x) − многочлены степени n (при n ≥ m), а степень s в дополнительном множителе xs равна кратности комплексного корня α ± β i в резонансном случае (т.е. при совпадении чисел α и β с комплексным корнем характеристического уравнения), и, соответственно, s = 0 в нерезонансном случае. Решить дифференциальное уравнение yIV − y = 2cos(x).
Сначала рассмотрим однородное уравнение и построим его общее решение. Характеристическое уравнение имеет следующие корни: Следовательно, общее решение однородного уравнения имеет вид: где C1,..., C4 − произвольные числа. Теперь найдем частное решение неоднородного уравнения. Здесь мы имеем резонансный случай, поскольку выражение в правой части соответствует по структуре комплексному корню α ± iβ = ±i. Поэтому будем искать частное решение в виде Производные этой функции равны: Подставляем найденные производные в неоднородное уравнение и определяем коэффициенты A, B: Итак, частное решение выражается в виде Тогда общее решение исходного неоднородного уравнения записывается как
|