Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Интеграл ФКП. Теорема Коши.
Формула (52) называется интегральной формулой Коши или интегралом Коши. Если в качестве контура в (52) выбрать окружность , то, заменяя и учитывая, что - дифференциал длины дуги , интеграл Коши можно представить в виде формулы среднего значения:
Формула Коши может быть расширена для производных аналитической функции , и так как входит в интеграл (52) как параметр, то на основе свойств интегралов, зависящих от параметра, после -кратного дифференцирования, можно получить
Помимо самостоятельного значения интегральной формулы Коши, (52), (54) фактически дают очень удобный способ вычисления контурных интегралов, которые, как видно, будут выражаться через значение " остатка" подынтегральной функции в точке, где эта функция имеет особенность . Пример 3-9. Вычислить интеграл от функции по контуру (рис.20). Решение. Точка , в которой функция имеет особенность, в отличие от примера 4-1, находится внутри окружности . Представим интеграл в форме (52):
|