Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Отображения и функционалы






    Наиболее общий способ установления отношения между элементами состоит в отображении элементов одного множества на элементы другого.

    Отображение – это правило, в соответствии с которым элементу одного множества, скажем , ставится в соответствие элемент другого множества, скажем . Символически отображение обозначается как , что является компактной формой следующего выражения:

    . (1.1.8)

    Элемент называется образом элемента при отображении . Множество является областью определения отображения, а входящее в множество всех образов элементов из является областью изображений. Если область изображений совпадает с , то говорят, что есть отображение на . Отображение всегда однозначно в том смысле, что для каждого элемента

    существует только один образ (по определению). Если различным элементам из соответствуют различные изображения в , то отображение взаимно-однозначное.

    Пусть, например, есть отображение вида

    .

    Тогда мы имеем отображение множества сигналов на действительную положительную полуось в соответствии с их энергией, как показано на рис. 1.3. В этом случае отношение эквивалентности, соответствующее , разбивает на подмножества сигналов с равной энергией.

    Рис. 1.3. Отображение сигналов в действительные числа.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.