Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Свойства. Множество всех билинейных форм , заданных на произвольном фиксированном пространстве, является линейным пространством.
Множество всех билинейных форм , заданных на произвольном фиксированном пространстве, является линейным пространством.
Любую билинейную форму можно представить в виде суммы симметричной и кососимметричной форм.
При выбранном базисе в любая билинейная форма однозначно определяется матрицей

так что для любых векторов и 

то есть

Это также означает, что билинейная форма полностью определяется своими значениями на векторах базиса.
Размерность пространства есть .
Несмотря на то, что матрица билинейной формы зависит от выбора базиса, ранг матрицы билинейной формы в любом базисе один и тот же, он называется рангом билинейной формы . Билинейная форма называется невырожденной, если ее ранг равен .
Для любого подпространства ортогональное дополнение является подпространством .
, где — ранг билинейной формы .
55..
Матрица 

элементы bij которой определены с помощью соотношений (7.4), называется матрицей билинейной формы В(х, у) в данном базисе е.
56.. Определение квадратичной формы
Квадратичная форма переменных - функция

- коэффициенты квадратичной формы. Без ограничения общности считают тогда

Если переменные принимают действительные значения и квадратичная форма называется действительной.
Матричная запись квадратичной формы
Матрица

называется матрицей квадратичной формы, ее ранг - рангом квадратичной формы. Квадратичная форма называется невырожденной, если 
Главные миноры матрицы A называются главными минорами квадратичной формы.
В пространстве квадратичную форму можно записать в виде где X - координатный столбец вектора 
В пространстве квадаратичную форму можно представить в виде где f - линейный самосопряженный оператор, матрица которого в некотором ортонормированном базисе равна A.
57..
|