Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Приведение квадратичной формы к каноническому виду методом Лагранжа.
Определение. Квадратичной формой или квадратичной функцией на линейном пространстве называется функция k, значение которой на любом векторе x определяется равенством k (x)= b (x, x), где b – симметричная билинейная функция.
При приведении квадратичной формы к диагональному виду (каноническому виду) можно воспользоваться методом выделения квадратов (методом Лагранжа). Покажем его на примере. Пусть задана квадратичная форма k(x)= Заметив, что коэффициент при отличен от нуля, соберем вместе все члены, содержащие :
Дополним выражение в квадратных скобках до квадрата суммы, прибавив и вычтя :
Теперь k (x)= + k '(x) - где k’ – квадратичная форма, значение которой зависит только от и : k '(x) = К ней можно применить тот же прием: k '(x) = Итак, k (x) = Где
|