Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Выбор начальных условий и определение постоянной сглаживания






    Как следует из выражения

    ,

    при проведении экспоненциального сглаживания необходимо знать начальное (предыдущее) значение сглаживаемой функции. В некоторых случаях за начальное значение можно взять первое наблюдение, чаще начальные условия определяются согласно выражениям (5.4) и (5.5). При этом величины , и определяются методом наименьших квадратов.

    Если мы не очень доверяем выбранному начальному значению, то, взяв большое значение постоянной сглаживания через k наблюдений, мы доведем «вес» начального значения до величины , и оно будет практически забыто. Наоборот, если мы уверены в правильности выбранного начального значения и неизменности модели в течение определенного отрезка времени в будущем, может быть выбрано малым (близким к 0).

    Таким образом, выбор постоянной сглаживания (или числа наблюдений в движущейся средней) предполагает принятие компромиссного решения. Обычно, как показывает практика, величина постоянной сглаживания лежит в пределах от 0, 01 до 0, 3.

    Известно несколько переходов, позволяющих найти приближенную оценку . Первый вытекает из условия равенства скользящей и экспоненциальной средней

    ,

    где m – число наблюдений в интервале сглаживания. Остальные подходы связываются с точностью прогноза.

    Так, возможно определение исходя из соотношения Мейера:

    ,

    где – среднеквадратическая ошибка модели;

    – среднеквадратическая ошибка исходного ряда.

    Однако использование последнего соотношения затруднено тем, что достоверно определить и из исходной информации весьма сложно.

    Часто параметр сглаживания, а заодно и коэффициенты и подбирают оптимальными в зависимости от критерия

    путем решения алгебраической системы уравнений, которую получают, приравнивая к нулю производные

    ; ; .

    Так, для линейной модели прогнозирования исходный критерий равен

    .

    Решение этой системы с помощью ЭВМ не представляет никаких сложностей.

    Для обоснованного выбора также можно использовать процедуру обобщенного сглаживания, которая позволяет получить следующие соотношения, связывающие дисперсию прогноза и параметр сглаживания для линейной модели:

    для квадратичной модели

    ,

    где ; – СКО аппроксимации исходного динамического ряда.


    Вопросы для самопроверки по разделу 5

    1. В чем суть метода экстраполяции сглаживания?

    2. Что такое интервал сглаживания?

    3. Как происходит расчет скользящей средней при большом числе уровней?

    4. Как выглядит общая запись в рекуррентной форме экспоненциальной средней порядка ?

    5. Как определяются параметры прогнозной модели методом экспоненциального сглаживания?

    6. Какова последовательность вычисления прогнозных значений?

    7. Как выбирается начальное значение сглаживаемой функции?

    8. Что такое матрица прецедентов?

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.