Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Сущность метода экспоненциального сглаживания






    Сущность метода состоит в том, что динамический ряд сглаживается с помощью взвешенной «скользящей средней», в которой веса подчиняются экспоненциальному закону. Другими словами, чем дальше от конца временного ряда отстоит точка, для которой вычисляется взвешенная скользящая средняя, тем меньше «участия она принимает» в разработке прогноза.

    Пусть исходный динамический ряд состоит из уровней (составляющих ряда) . Для каждых последовательных уровней этого ряда (m< n) можно подсчитать среднюю величину. Вычислив значение средней для первых уровней , переходят затем к расчету средней для уровней и так далее. Таким образом, интервал сглаживания, то есть интервал, для которого подсчитывается средняя, как бы скользит по динамическому ряду с шагом, равным единице. Если – нечетное число, а предпочтительно брать нечетное число уровней, поскольку в этом случае расчетное значение уровня окажется в центре интервала сглаживания и им легко заменить фактическое значение, то для определения скользящей средней можно записать следующую формулу:

    ,

    где – значение скользящей средней для момента ();

    – фактическое значение уровня в момент ;

    – порядковый номер уровня в интервале сглаживания.

    Величина определяется из продолжительности интервала сглаживания.


    Поскольку

    при нечетном , то

    .

    Расчет скользящей средней при большом числе уровней можно упростить, определяя последовательные значения скользящей средней рекурсивно:

    .

    Но исходя из того, что последним наблюдениям необходимо придать больший «вес», скользящее среднее нуждается в ином толковании. Оно заключается в том, что полученная с помощью усреднения величина заменяет не центральный член интервала усреднения, а его последний член. Соответственно этому последнее выражение можно переписать в виде

    . (5.1)

    Здесь скользящая средняя, относимая к концу интервала, обозначена новым символом . По существу, равно , сдвинутому на шагов вправо, то есть , где .

    Учитывая, что является оценкой величины , выражение (5.1) можно переписать в виде

    , (5.2)

    где является оценкой , определяемой выражением (5.1).

    Если вычисления (5.2) повторять по мере поступления новой информации и переписать в ином виде, то получим сглаженную функцию наблюдений:

    ,

    или в эквивалентной форме

    (5.3)

    Вычисления, проводимые по выражению (5.3) с каждым новым наблюдением, называются экспоненциальным сглаживанием. В последнем выражении для отличия экспоненциального сглаживания от скользящего среднего введено обозначение вместо . Величина , являющаяся аналогом , называется постоянной сглаживания. Значения лежат в интервале . Если представить в виде ряда

    ,

    то нетрудно заметить, что «веса» убывают по экспоненциальному закону во времени. Например, для получим

    0, 2 + 0, 16 + 0, 128 + 0, 102 + 0, 082 + …

    Сумма ряда стремится к единице, а члены суммы убывают со временем.

    Величина в выражении (5.3) представляет собой экспоненциальную среднюю первого порядка, то есть среднюю, полученную непосредственно при сглаживании данных наблюдения (первичное сглаживание). Иногда при разработке статистических моделей полезно прибегнуть к расчету экспоненциальных средних более высоких порядков, то есть средних, получаемых путем многократного экспоненциального сглаживания.

    Общая запись в рекуррентной форме экспоненциальной средней порядка имеет вид

    .

    Величина изменяется в пределах 1, 2, …, p, p+1, где p – порядок прогнозного полинома (линейного, квадратичного и так далее).

    На основе этой формулы для экспоненциальной средней первого, второго и третьего порядков получены выражения

    ;

    ;

    .

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.