Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Еще раз об обратной матрице
Если квадратная матрица имеет второй или третий порядок, то обратную к ней найти очень просто. Это можно сделать практически устно, используя алгебраические дополнения. Если же матрица имеет более высокий порядок, то алгебраические дополнения устно считать уже затруднительно, да и количество их растет. Например, для вычисления обратной к матрице четвертого порядка надо найти один определитель четвертого порядка и 16 определителей третьего. Разберем сейчас ещё один способ вычисления обратной матрицы.
Пусть – невырожденная квадратная матрица -го порядка. Обратную к ней можно найти как решение матричного уравнения
. (2.26)
Обозначим -йстолбец матрицы , – -столбец матрицы , . Тогда уравнение (2.26) можно преобразовать так:
{(2.26)} { } { } { }.
Таким образом, матричное уравнение (2.26) равносильно системе
(2.27)
состоящей из систем линейных уравнений с одной и той же невырожденной матрицей . Каждую из этих систем можно решить методом Гаусса, приводя элементарными преобразованиями над строками (или методом опорного элемента) матрицу к единичной (столбец при этом переходит в некоторый столбец ):
{ } { } { }.
Тогда .
Так как в (2.27) все системы имеют одну и ту же матрицу, то нет необходимости преобразовывать отдельно расширенную матрицу каждой из этих систем, а можно это сделать вместе, записав матрицу и преобразовывая сразу и матрицу , и все столбцы .
Из вышесказанного вытекает правило нахождения обратной матрицы: записываем расширенную матрицу и, применяя элементарные преобразования только к строкам, приводим матрицу к единичной. При этом матрица приводится к : .
Пример. С помощью элементарных преобразований найдем обратную к матрице
.
▼



.
Таким образом,
.▲
|