Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Критерий совместности системы линейных уравнений
Теорема 2.5 (Кронекера – Капелли или критерий совместности системы линейных уравнений). Для того чтобы система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы равнялся рангу расширенной матрицы . ► Пусть задана система линейных уравнений (2.16) с матрицей А. Будем обозначать j -й столбец матрицы А. Система (2.16) может быть записана следующим образом: (2.17) Необходимость. Дано: система совместна. Следовательно, существует упорядоченный набор чисел такой, что Получаем: [прибавляем к последнему столбцу ] Достаточность. Дано: . Предположим, что базисный минор матрицы A расположен в первых r столбцах. Этот же минор является базисным и для матрицы Ã: он отличен от нуля и его порядок равен r. По теореме о базисном миноре r первых столбцов матрицы Ã линейно независимы, а остальные, в том числе и В, можно через них выразить, т. е. существует такой упорядоченный набор чисел , что . Итак, упорядоченный набор удовлетворяет уравнению (2.17), значит, является решением системы (2.16).◄
|