Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Правило Крамера решения систем линейных уравнений






    ГЛАВА 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

     

    Определения. Системой линейных уравнений называется система уравнений вида

    (2.1)

    где – известные числа; – неизвестные; . Решениемсистемы (2.1) называется упорядоченный набор чисел , который при подстановке в каждое из уравнений системы обращает его в верное равенство. Система называется совместной, если она имеет хотя бы одно решение.

    Введем следующие обозначения:

    – матрица системы, Ã =

    расширенная матрица, – столбец неизвестных, – столбец свободных членов.

    Матричными уравнениями называются уравнения вида АХ = В, ХА = = В, АХВ = С, где A, B, C – известные матрицы; Х – искомая.

    Матрица называется решением матричного уравнения, если при подстановке в это уравнение она обращает его в верное равенство.

    Лемма 2.1. Пусть А – матрица системы (2.1), а В – столбец ее свободных членов. Тогда система линейных уравнений (2.1) равносильна матричному уравнению

    АХ=В, (2.2)

    в следующем смысле: если – решение (2.1), то столбец - решение (2.2), и наоборот.

    ► { – решение системы (2.1)}

    – решение уравнения (2.2)}.◄

    Уравнение (2.2) называется матричной формой записи системы (2.1).

    Теорема 2.1 (правило Крамера). Если в системе линейных уравнений число уравнений равно числу неизвестных и определитель системы , то эта система имеет единственное решение, которое можно найти по формулам Крамера

    , (2.3)

    где – определитель, полученный из ∆ заменой j -ого столбца на столбец свободных членов.

    ► На основании доказанной леммы система (2.1) равносильна матричному уравнению (2.2), поэтому теорему доказываем для этого уравнения.

    Единственность. Предположим, что (2.2) имеет два различных решения и . Тогда

    { и }

    – противоречие.

    Существование. Покажем, что

    – (2.4)

    решение уравнения (2.2). Действительно, Для получения же формул (2.3) распишем равенство (2.4) поэлементно. Введем обозначения: Тогда

    (2.4) : [теорема замещения] =






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.