Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Правило Крамера решения систем линейных уравнений






ГЛАВА 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

 

Определения. Системой линейных уравнений называется система уравнений вида

(2.1)

где – известные числа; – неизвестные; . Решениемсистемы (2.1) называется упорядоченный набор чисел , который при подстановке в каждое из уравнений системы обращает его в верное равенство. Система называется совместной, если она имеет хотя бы одно решение.

Введем следующие обозначения:

– матрица системы, Ã =

расширенная матрица, – столбец неизвестных, – столбец свободных членов.

Матричными уравнениями называются уравнения вида АХ = В, ХА = = В, АХВ = С, где A, B, C – известные матрицы; Х – искомая.

Матрица называется решением матричного уравнения, если при подстановке в это уравнение она обращает его в верное равенство.

Лемма 2.1. Пусть А – матрица системы (2.1), а В – столбец ее свободных членов. Тогда система линейных уравнений (2.1) равносильна матричному уравнению

АХ=В, (2.2)

в следующем смысле: если – решение (2.1), то столбец - решение (2.2), и наоборот.

► { – решение системы (2.1)}

– решение уравнения (2.2)}.◄

Уравнение (2.2) называется матричной формой записи системы (2.1).

Теорема 2.1 (правило Крамера). Если в системе линейных уравнений число уравнений равно числу неизвестных и определитель системы , то эта система имеет единственное решение, которое можно найти по формулам Крамера

, (2.3)

где – определитель, полученный из ∆ заменой j -ого столбца на столбец свободных членов.

► На основании доказанной леммы система (2.1) равносильна матричному уравнению (2.2), поэтому теорему доказываем для этого уравнения.

Единственность. Предположим, что (2.2) имеет два различных решения и . Тогда

{ и }

– противоречие.

Существование. Покажем, что

– (2.4)

решение уравнения (2.2). Действительно, Для получения же формул (2.3) распишем равенство (2.4) поэлементно. Введем обозначения: Тогда

(2.4) : [теорема замещения] =






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.