Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Основные характеристики полей
Дивергенция векторного поля в данной точке М определяется как предел отношения его потока через замкнутую поверхность σ, содержащую внутри себя точку М, в направлении внешней нормали, к объему v тела Ω, границей которого служит поверхность σ, при условии, что : Дивергенция в точке M характеризует «мощность источника» M (если она положительна) и «мощность стока» M (если она отрицательна). В декартовых координатах это скалярное поле выражается формулой: здесь Имеет место формула Остроградского – Гаусса В этой формуле поток Π в левой части равенства вычисляется для замкнутой поверхности σ в направлении внешней нормали к ней, тройной интеграл в правой части равенства вычисляется по телу Ω, границей которого служит поверхность σ. В более подробной записи правая часть приобретает вид: Π = Задача 30. Найти поток векторного поля через всю поверхность цилиндра, ограниченного поверхностями: в направлении внешней нормали. Решение. Задачи для самостоятельного решения: [5, с. 196–197; 10, с. 79–80; 4, с. 166 (без 3.8)]. Ротор векторного поля обозначаемый символом есть новое векторное поле, которое строится следующим образом: его ортогональная проекция на произвольный единичный вектор вычисляется по формуле: Здесь – произвольный замкнутый контур, лежащий в плоскости, перпендикулярной вектору который обходится против часовой стрелки, если смотреть из конца вектора содержит внутри себя точку М, S – площадь фигуры, ограниченной контуром В декартовых прямоугольных координатах имеет вид: Здесь поле имеет координаты Ротор характеризует завихренность поля в данной точке. Задача 31. Найти поток векторного поля через сферу в направлении внешней нормали. Решение. Задача 32. Найти поток векторного поля через замкнутую поверхность в направлении внешней нормали двумя способами: а) непосредственно, б) по теореме Остроградского – Гаусса. Решение. а) Для найдем Т.к. то
Поэтому б) = Задача 33. Поле с нулевой дивергенцией называется соленоидальным. Выяснить, какие из следующих полей соленоидальны: а) (да) б) (нет) в) (да) Задача 34. Найти дивергенцию векторного поля где – постоянный вектор, Решение. Задача 35. Электростатическое поле точечного заряда q равно Вычислить Решение. Очевидно, что ибо поэтому Далее, векторное поле характеризует зависимость поля В самом деле, рассмотрим вращение твердого тела вокруг оси с угловой скоростью тогда линейная скорость точки этого тела представима в виде: Т.е. сонаправлен с осью вращения его модуль равен удвоенной угловой скорости вращения тела и не зависит от точки М. Теорема Стокса. Циркуляция векторного поля по произвольному кусочно-гладкому замкнутому контуру равна потоку векторного поля через поверхность границей которого служит Обход контура против часовой стрелки, если смотреть из конца вектора -нормали к поверхности Задача 36. Вычислить циркуляцию С векторного поля по окружности в положительном направлении относительно вектора Решение. а) Непосредственно. б) По теореме Стокса. Здесь – круг в) По теореме Стокса. – полусфера Найдем Поскольку то Поэтому В полярных координатах Рассмотренный выше пример служит подтверждением теоремы Стокса в той ее части, которая касается произвольности поверхности s, границей которой служит заданный контур Задачи для самостоятельного решения: [4, с. 168–169; 5, с. 246–247 задачи № 50 – 54; 10, с. 90–96]. 4.3.2. Специальные виды векторных полей – потенциальное и соленоидальное Поле называется потенциальным, если оно является полем градиента некоторого скалярного поля. Иначе, поле потенциально, если существует скалярное поле U, такое что Функция U называется потенциалом поля Критерием потенциальности поля является равенство нулю вихря: Если потенциально, то т.е. интеграл не зависит от пути интегрирования и равен разности потенциалов между конечной точкой кривой и ее начальной точкой. Задача 37. Найти потенциал поля Решение. Убедимся в его потенциальности, и если оно потенциально, то криволинейный интеграл не зависит от пути интегрирования, а зависит лишь от начальной и конечной её точки В. Итак, Тогда разность потенциалов где Соединим точки А и В ломаной: Тогда Найдём каждое из слагаемых:
Искомый интеграл будет равен Поэтому Задачи для самостоятельного решения: [4, с. 173–174; 5, с. 247 задачи № 55, 57, 59; 10, с. 108]. Поле, в котором дивергенция равна нулю, называется соленоидальным. Векторные линии поля (кривые, касающиеся поля в каждой своей точке) не могут начинаться или заканчиваться в области соленоидальности; это может происходить лишь на границе этой области, либо эти кривые замкнуты. В соленоидальном поле поток вектора через поперечное сечение векторной трубки сохраняет постоянное значение, что следует из теоремы Остроградского – Гаусса. Задачи для самостоятельного решения: [4, с. 175; 10, с. 123–125].
|