![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Векторный анализ
4.1. Криволинейные интегралы При определении криволинейных или поверхностных интегралов предполагается, что соответствующая кривая (поверхность) погружается в скалярное или векторное поле.
4.1.1 Криволинейный интеграл I рода Пусть кривая
где Физический смысл этого выражения достаточно ясен из его обозначения: значение поля U в точке (x, y, z) умножается на длину малого участка кривой, после чего происходит суммирование по этим участкам. В частности, если Более точные определения можно найти, например [5] или [8]. Там же приведены примеры физических приложений криволинейных интегралов I рода.
|