Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод моментов






Идея этого метода заключается в приравнивании теоретических и эмпирических моментов. Поэтому мы начнем с обсуждения этих понятий.

Пусть -- независимая выборка из распределения , зависящего от неизвестного параметра Теоретическим моментом -го порядка называется функция

где -- случайная величина с функцией распределения .Особо отметим, что теоретический момент есть функция от неизвестных параметров, коль скоро распределение зависит от этих параметров. Будем считать, что математические ожидания существуют, по крайней мере, для .

Эмпирическим моментом -го порядка называется

Отметим, что по своему определению эмпирические моменты являются функциями от выборки. Заметим, что -- это хорошо нам известное выборочное среднее.

Для того, чтобы найти оценки неизвестных параметров по методу моментов следует:

  1. явно вычислить теоретические моменты , , и составить следующую систему уравнений для неизвестных переменных :
(35)

  1. В этой системе рассматриваются как фиксированные параметры.
  2. решить систему (35) относительно переменных .Так как правая часть системы зависит от выборки, то в результате окажутся функциями от :

Это и есть искомые оценки параметров по методу моментов.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.