Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Определение 6.2
Величины, вычисляемые по выборке,
и
называются выборочным средним и выборочной дисперсией. Следует особо подчеркнуть, что определенные выше величины зависят только от выборки. Следующее предложение объясняет, почему естественно считать выборочным аналогом математического ожидания, а -- выборочным аналогом дисперсии. Предложение 6.1 Математические ожидания и совпадают с оцениваемыми неизвестными величинами:
Дисперсия стремится к нулю при росте объема выборки. Доказательство. Используя линейность математического ожидания, получим Так как выборка независимая, то .Следовательно, при . Покажем теперь, что . Первое замечание состоит в том, что не зависит от сдвига всех элементов выборки на одну и ту же константу, то есть, значения выражения (30) для выборок и одинаковы. Поэтому без ограничения общности мы будем считать, что . При этом предположении Теперь, проводя очевидные преобразования и применяя свойства математического ожидания, легко получаем необходимое утверждение
Это утверждение свидетельствует о том, что и являются``качественными приближениями'' для неизвестных величин и .Свойство (31) называется несмещенностью. Тот факт, что дисперсия исчезает с увеличением объема выборки дает основание для вывода о том, что, чем больше данных измерений мы возьмем для статистической обработки, тем точнее будут наши выводы.
|