![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Игра двух лиц с нулевой суммой как задача линейного программирования
Рассмотрим платежную матрицу игры двух лиц, не имеющую седловых точек,
где платежи Uij имеют смысл выигрышей игрока A. Как известно, такая игра имеет решение в области смешанных стратегий. Пусть X=(x 1, x 2, …, xm) – распределение вероятностей на стратегиях игрока A. Тогда согласно принципу гарантированного результата этот игрок будет выбирать такое поведение (распределение X *), которое максимизирует наименьший ожидаемый выигрыш
Обозначим через n минимальный ожидаемый выигрыш
Отсюда очевидно, что n не больше каждого ожидаемого выигрыша, и так как цель – максимальный выигрыш, то приходим к следующей эквивалентной задаче L=n→ max при ограничениях
5. Модели управления транспортными потоками. Задачи, называемые транспортными, составляют большой подкласс распределительных задач. С содержательной стороны они не обязательно связаны с доставкой или перевозкой грузов, а выделяются из других задач особой структурой математической модели. Поэтому правильнее говорить о моделях транспортного типа. Если удельные затраты на перевозку не зависят от количества перевозимого груза, транспортная задача описывается линейной моделью. При этом ее особенности позволяют применять специальные методы линейного программирования, которые более эффективны, чем универсальные. Простейшая транспортная задача (Т-задача) В общем случае исходными данными являются: m – число пунктов отправления (ПО) или производства; n – число пунктов назначения (ПН) или потребления; Cij – затраты на перевозку единицы груза из пункта i в пункт j, " ij; ai – количество груза в пункте i, " i (возможности ПО); bj – потребность в грузе в пункте j, " j. Критерием задачи являются суммарные затраты на перевозку. Безотносительно к значениям ai и bj модель записывается в виде Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Однако такая запись модели корректна только тогда, когда
Элементы модели:
Особенности рассматриваемой задачи: - модель содержит две группы условий, размерность которых равна соответствующему числу ПО и ПН; число переменных равно произведению m ´ n; - все коэффициенты при переменных в условиях (3), (4) равны единице; - каждая переменная входит в условия ровно 2 раза, один и только один раз в группу (3) и также один раз в группу (4); - задача имеет простые условия разрешимости, которые определяются следующей теоремой. Теорема. Для разрешимости Т-задачи необходимо и достаточно, чтобы она была сбалансированной. Замечание. Теорема справедлива при конечных значениях Сij. Доказательство. Необходимость доказывается исходя из того, что задача (2)-(5) разрешима. В этом случае все условия задачи выполняются. Просуммируем условия (3) по i, а условия (4) по j: Достаточность. Задача линейного программирования всегда разрешима, если допустимое множество – выпуклый многогранник, то есть непустое и ограниченное. Ограниченность переменных снизу задана явно, а ограничение сверху следует из конечности всех ai и bj, больше которых переменные быть не могут. Следовательно, множество ограничено. Множество непустое. Для этого достаточно найти хотя бы одно допустимое решение. Одно из таких решений всегда можно построить, если задача сбалансирована, следующим образом:
Транспортная задача с ограниченными пропускными способностями (Td - задача) Учет ограничений на пропускные возможности коммуникаций. В реальных условиях пропускные способности дорог, воздушных коридоров, линий связи и т.п. всегда ограничены сверху. Учет этих ограничений приводит Тd-задаче. Ее модель имеет вид Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
где dij –пропускная способность коммуникации i j. В Тd-задаче условие сбалансированности не является достаточным для разрешимости задачи. Более того, в число необходимых условий существования решения помимо его входят еще две группы условий, отражающих физическую реализуемость решения:
|