Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Доказательство. Пусть связной граф является Эйлеровым, тогда существует циклический Эйлеров путь
Необходимость. Пусть связной граф является Эйлеровым, тогда существует циклический Эйлеров путь. Выберем любую вершину графа. Число ребер входа равно числу ребер выхода. Любая промежуточная вершина Эйлерова пути четная. Достаточность. Пусть степени всех вершин – четные. Докажем, что существует циклический Эйлеров путь. Выберем любую вершину , двигаясь по ребрам, окрашиваем их. Продолжим движение по неокрашенным, вернемся в . Получим циклический путь, который состоит из окрашенных ребер. () 1 случай: все ребра окрашены. 2 случай: есть хотя-бы одно неокрашенное ребро. Поскольку граф связный, то найдется ребро, один конец которого принадлежит окрашенному ребру. Пусть у степень четная, тогда путь может закончиться в вершине . , где – некоторая цепь. Получили другой циклический путь. Если остались еще неокрашенные ребра, то продолжаем процедуру. Получаем Эйлеров путь.
|