![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Статистический анализ уравнения регрессии⇐ ПредыдущаяСтр 40 из 40
Для того чтобы установить, соответствует ли выбранная регрессионная модель экспериментальным данным, используют основное уравнение дисперсионного анализа, записанное в виде:
где:
В случае не сгруппированной выборки приведенные формулы для сумм несколько упрощаются и принимают вид: Приведенные формулы позволяют найти соответствующие исправленные дисперсии:
где: Для заданного уровня значимости α и количеств степеней свободы
то уравнение регрессии считается значимым или соответствующим экспериментальным данным на уровне значимости α. Воздействие неучтенных случайных факторов в линейной модели регрессии определяется остаточной дисперсией, оценкой которой является выборочная остаточная дисперсия
ПРИМЕР: Для зависимости Y от Х, заданной корреляционной таблицей 2.1 подраздела 2.5.1, найти оценки параметров уравнения линейной регрессии, остаточную дисперсию, а также оценить значимость найденного уравнения регрессии при Воспользуемся результатами, полученными в примерах подразделов 2.5.1 ÷ 2.5.4:
С учетом формулы искомое уравнение регрессии можно записать в виде:
но тогда: Для выяснения значимости найденного уравнения регрессии вычислим суммы
Таким образом, получены значения: Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение
а также наблюдаемое значение критерия Фишера-Снедекора:
По таблицам критических точек распределения Фишера-Снедекора для уровня значимости
Рекомендуемая литература по теме 2.5: [1 ÷ 4, 6].
ВОПРОСЫ для самопроверки знаний по теме 2.5:
1. Какое различие между функциональной, стохастической и корреляционной зависимостями?
2. Что записывается в последних строке и столбце корреляционной таблицы?
3. Какой величиной характеризуется степень линейной зависимости между случайными величинами? ____________________________________________________________
4. Какой величиной характеризуется степень любой зависимости между случайными величинами? ____________________________________________________________
5. Какой коэффициент стоит при независимой переменной в уравнении линейной регрессии?
6. С помощью какого критерия проверяется значимость линейного уравнения регрессии?
ЛИТЕРАТУРА
1. Налимов В.Н. Теория вероятностей и математическая статистика для экономистов: Учебное пособие – М.: «Весть», 2007. 2. Болдин К.В. и др. Основы теории вероятностей и математической статистики: Учебник. – М.: Флинта, 2010. 3. Попов А.М., Сотников В.Н. Теория вероятностей и математическая статистика: Учебник. – М.: Юрайт, 2011. 4. Геворкян П.С. и др. Теория вероятностей и математическая статистика: Учебник. – М.: Экономика, 2012. 5. Налимов В.Н. Основы теории и методы решения дифференциальных и разностных уравнений для экономистов: Учебное пособие. – М.: Издание ИМЭС, 2013. 6. Налимов В.Н. Основы математического анализа для экономистов: Учебное пособие. – М.: Издание ИМЭС, 2013.
|