Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Скалярное поле. Производная по направлению. Градиент.






    Пусть в пространстве (х, у, z) есть область D, в которой задана функция u = u(x, y, z). В этом случае говорят, что в области D задано скалярное поле, т.е. каждая точка из этой области хaрактеризуется скаляром (числом) u, однозначно связанным с ее координатами. (Если u = f(x, y, z) определяет температуру в точке М (х, у, z) – поле температур и т.п.).

    Рис 5.2
    Проведем из точки М области D (рис. 5.2) вектор ` s, напрaвляющие косинусы которого cosa, cosb, cosg (a, b, g – углы наклона вектора к осям Ох. Оу, Оz). Возьмем на s точкy М1 (х + Dх, у + Dу, z + Dz). Расстояние ММ1 определится выражением . Полагаем, что функция и ее производные по х, у, z непрерывны в области D. Полное приращение функции представим как Du = ux` Dx + uy` Dy + uz` Dz + e1Dx + e2Dy + e3Dz (1) где e1, e2, e3 стремятся к нулю при Ds ® 0. Разделим все члены (1) на Ds:

    (2).

    Очевидно, что и (2) можно записать в виде: (3). в точке (x, y, z)

    Предел отношения Du / Ds при Ds ® 0 называется производной от функции u = f(x, y, z) в точке (х, у, z) по направлению вектора ` s и обозначается ; (4). Переходя к пределу в (3) получим:

    (5.9)

    Зная частные производные легко найти производную по любому направлению ` s. (Сами частные производные являются производными по направлению векторов ` i, `j, `k).

    Градиентом функции u = f(x, y, z) в точке M(x, y, z) называется вектор, проекции которого на оси координат являются значениями частных производных функции в этой точке: (5.10)

    Т.о. каждой точке области D задания функции u соответствует градиент grad u, т.е. в области D определено векторное поле градиентов. Можно показать, что если в области D задано скалярное поле u = u(x, y, z) и в нем определено поле градиентов (5.10), то (производная по направлению `s)равняется проекции вектора grad u на вектор ` s, т.е. (5.11),

    откуда, обозначив через j угол между ` s и grad u, получим

    5.11`) или (5.11``).

    Отметим важное свойство градиента – производная в данной точке по направлению вектора ` s имеет наибольшее значение и равнa |grad u|, если направление` s совпадает с направлением градиента.

     

    Контрольные вопросы.

    1) Какое поле называется скалярным?

    2) Как находится производная от функции u=f(x, y, z) в точке (x, y, z) по направлению вектора ?

    3) Что называют градиентом функции (поля) u=f(x, y, z) в точке (x, y, z)?

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.