Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Основные определения. Частные производные. Дифференциалы.






    Представление о функции нескольких переменных могут дать простые примеры. Площадь прямоугольника S = xy. Если длины сторон х и у рассматривать как независимые переменные, то S – функция этих переменных. Площадь треугольника (х и у – стороны треугольника, j – угол между ними) можно рассматривать как функцию трех независимых переменных.

    Если каждой паре значений независимых друг от друга переменных величин х и у из некоторой области D соответствует определенное значение величины z, говорят, что z есть функция независимых переменных х и у, определенная в области D. Символическая запись: z = f(x, y), j(x, y) и т.д.

    Областью определения D функции называют совокупность значений х и у, при которых функция z = f(x, y) существует. Геометрически это некая совокупность точек плоскости хОу, в простейшем случае часть ее, ограниченная замкнутой кривой (точки этой линии могут принадлежать (замкнутая), или не принадлежать (открытая) области определения). Геометрическое представление функции z = f(x, y) – поверхность в трехмерном пространстве. (Простейший случай – плоскость, уравнение которой можно представить в виде: z = py + qx + t, (см. (2.25)).

    Аналогично определяется функция произвольного числа переменных (исключая вопрос о геометрической интерпретации). Далее, без потери общности, будем рассматривать функцию двух переменных.

    Наглядное представление о геометрической интерпретации функций двух и трёх независимых переменных z=f(x, y) и u=f(x, y, z) могут дать линии и поверхности уровня соответственно. Линией уровня функции z=f(x, y) называется линия f(x, y) = с на плоскости хОу, в точках которой функция сохраняет постоянное значение. Примеры: линии уровня на географических картах, позволяющие получить представление о рельефе местности, изобары и изотермы в физике и метеорологии и т.д.

    Поверхностью уровня функции u=f(x, y, z) называется поверхность f(x, y, z)=с, в точках которой функция сохраняет постоянное значение u = с. Позволяют, например, получить представление о распределении (поле) температур в части пространства (материальном теле).

    Если одной из независимых переменных дать некоторое приращение, то, в общем случае, получит приращение и функция. Величины: Dxz = f(x + Dx, y) – f(x, y) и Dуz = f(x, у +Dy) – f(x, y) называют частными приращениями функции.

    Величина Dz = f(x + Dx, y + Dy) – f(x, y) (обе независимых переменных получают приращения и ) называется полным приращением.

    Окрестностью радиуса r точки М00, у0) называют совокупность всех точек (х, у), удовлетворяющих неравенству (всех точек, лежащих внутри круга радиуса r с центром в точке М0).

    Пусть дана функция z = f(x, y) определенная в области D, и точка М00, у0), лежащая в области D или на ее границе.

    Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М00, у0), если для всякого e > 0, найдется такое r > 0, что для всех точек М(х, у), для которых выполняется неравенство ММ0 < r, справедливо неравенство |f(x, y) – A| < e. Символическая запись: . Функция z = f(x, y) называется непрерывной в точке М00, у0), если , причем точка М(х, у) стремится к точке М00, у0) произвольным образом, оставаясь в области определения функции. Функция, непрерывная в каждой точке некоторой области, непрерывна в области.

    Частной производной по х от функции z = f(x, y) называется предел отношения частного приращения Dхz к приращению при Dх ® 0, т.е.

    Аналогично определяется частная производная по у:

    Вычисляются производные по каждой переменной с помощью известных уже приемов, причем другая переменная полагается постоянной.

    Рассмотрим полное приращение функции Dz = f(x + Dx, y + Dy) – f(x, y) в предположении, что функция f(x, y) в точке х, у имеет непрерывные частные производные.

    Аналогично тому, как это было сделано для функции одной переменной, полное приращение можно представить в виде: (1), где g1 и g2 стремятся к нулю, если и стремятся к нулю.

    Сумма первых двух слагаемых линейна относительно и и при z`x ¹ 0 и z`y ¹ 0 представляет собой главную часть приращения, отличаясь от Dz на бесконечно малую высшего порядка относительно и . Такая функция называется дифференцируемой в данной точке, а линейная часть приращения называется полным дифференциалом и обозначается dz или df.

    Таким образом, если функция f(x, y) имеет непрерывные частные производные в данной точке, то она дифференцируема в этой точке и имеет полный дифференциал dz = fх` (x, y) Dx + fу`(x, y) Dy (5.1)

    или (5.1`), где dx = Dx и dy = Dy называют дифференциалами независимых переменных. Как и в случае функции одной переменной, дифференциал можно применить для приближенного вычисления функции с помощью равенства, легко получаемого из (1):

    (5.2)

    (с точностью до бесконечно малых высшего порядка относительно и ).

    Производные сложной и неявной функций

    Пусть z = F(u, v), где u = f(x, y) и v = j(x, y). Функция F(u, v) – сложная функция двух независимых переменных. Предположим, что функции F(u, v), f(x, y) и j(x, y) имеют непрерывные частные производные по всем своим аргументам. Можно показать, что в этом случае частные производные от функции F(u, v) по х и у определяются выражениями:

    (5.3)

    Если функция двух независимых переменных задана уравнением F(x, y) = 0 (2) (неявная функция), причем функции F(x, y), Fx`(x, y) и Fy`(x, y) непрерывны в некоторой r окрестности точки (х, у), координаты которой удовлетворяют уравнению (2), а Fy`(x, y) ¹ 0 в этой точке, то функция у от х имеет производную (5.4).

    В случае неявной функции трех независимых переменных, заданной уравнением F(x, y, z) = 0 (2`) аналогичные соотношения позволяют найти частные производные функции z(x, y), определяемой уравнением (2`):

    (5.4`).

    Пример: найти частные производные неявной функции х2 + у2 + z2 – R2 = 0. Используя (5.4`) получим .

     

    Производные и дифференциалы высших порядк ов определяются, по сути, так же, как и для функции одной переменной.

    Вторые частные производные (частные производные от частных производных) обозначаются: (5.5). (5.5`)

    (5.5``) (5.5```)

    В (5.5) функция дважды дифференцируется по х, в (5.5') - сначала по х, потом по у, в (5.5")- сначала по у, потом по х и в (5.5" ')- дважды по у.

    Аналогично находятся производные высших порядков, обозначаемые , где n – номер порядка, р – число дифференцирований по х, а n – p число дифференцирований по у. Отметим, что если функция z = f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и некоторой ее окрестности, то в этой точке .

    Это же утверждение, при выполнении соответствующих условий, справедливо для производных любых порядков т.е. и для функции любого числа переменных, например т.е. смешанные производные, отличающиеся лишь последовательностью дифференцирования, равны между собой, если они непрерывны.

    Дифференциалом второго порядка от функции z = f(x, y) называется дифференциал от ее полного дифференциала, т.е.

    (5.6).

    Аналогично может быть найден дифференциал произвольного порядка.

     

    Контрольные вопросы.

    1) Что называется линией уровня, поверхностью уровня функции u=f(x, y, z)?

    2) Как определяются частные производные функции z=f(x, y)?

    3) Что называют полным дифференциалом функции z=f(x, y)?

    4) Как находятся производные сложной и неявной функции двух независимых переменных?

    5) Что называется дифференциалом второго порядка от функции z=f(x, y)?

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.