Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Касательная плоскость и нормаль к поверхности. Геометрический смысл полного дифференциала.
Пусть поверхность задана уравнением F(x, y, z) = 0. Прямая называется касательной к поверхности в точке М0(х0, у0, z0), если она является касательной к какой – либо кривой, лежащей на поверхности и проходящей через точку М0. Если в точке М0 все три производные Fx`, Fy`, Fz` равны нулю или хотя бы одна из них не существует, то точка М0 называется особой точкой поверхности. Если в точке М0 все три производные существуют и непрерывны, причем хотя бы одна из них отлична от нуля, то точка М0 называется обыкновенной точкой поверхности. Можно показать, что все касательные прямые к данной поверхности в ее обыкновенной точке лежат в одной плоскости, называемой касательной плоскостью к поверхности в точке М0. (В особых точках поверхности касательная плоскость может не существовать). Касательная плоскость перпендикулярна вектору и её уравнение имеет вид: Fx`(x - x0) + Fy`(y - y0) + Fz`(z -z0) = 0 (5.7). Если уравнение поверхности задано в виде z = f(х, y), то уравнение касательной плоскости примет вид: z - z0 = fx`(x - x0) + fy`(y - y0) (5.7`). Прямая, проведенная через точку М0(х0, у0, z0) поверхности перпендикулярно касательной плоскости, называется нормалью к поверхности. Ее направление определяется вектором `N и канонические уравнения примут вид: (5.8), а если уравнение поверхности задано в виде z = f(x, y), то (5.8`). Обсудим геометрический смысл частных производных и полного дифференциала функции z = f(x, y) (F(x, y, z) = 0). Проведем через точку Р(х0, у0, z0) плоскость х = х0. В сечении ее поверхностью (рис. 5.1) получим линию. Если дать приращение Dy = MN = PТ` переменной у (при неизменном х), функция получит приращение Dyz = TT`. Очевидно, предел , где b – угол, образуемый касательной PВ к кривой PТ в точке Р0 с положительным направлением оси Оу. Аналогично, , где a – угол, образуемый касательной к сечению поверхности z = f(x, y) плоскостью у = у0 с положительным направлением оси Ох. Если в (5.7') положим х –х0 =Dх, у – у0 = Dу, то оказывается, что правая часть ее – полный дифференциал функции z = f(x, y) и z – z0 = dz, т.е. полный дифференциал функции двух переменных в точке М(х, у), соответствующий приращениям Dх и Dу независимых переменных х и у, равен соответствующему приращению аппликаты z плоскости касательной к поверхности z = f(x, y).
Контрольные вопросы. 1) Какая точка называется особой точкой поверхности? 2) Какая плоскость называется касательной к поверхности в точке? 3) Что называется нормалью к поверхности? 4) В чём состоит геометрический смысл частных производных и полного дифференциала функции z=f (x, y)?
|