Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Касательная плоскость и нормаль к поверхности. Геометрический смысл полного дифференциала.






    Пусть поверхность задана уравнением F(x, y, z) = 0. Прямая называется касательной к поверхности в точке М00, у0, z0), если она является касательной к какой – либо кривой, лежащей на поверхности и проходящей через точку М0. Если в точке М0 все три производные Fx`, Fy`, Fz` равны нулю или хотя бы одна из них не существует, то точка М0 называется особой точкой поверхности. Если в точке М0 все три производные существуют и непрерывны, причем хотя бы одна из них отлична от нуля, то точка М0 называется обыкновенной точкой поверхности. Можно показать, что все касательные прямые к данной поверхности в ее обыкновенной точке лежат в одной плоскости, называемой касательной плоскостью к поверхности в точке М0. (В особых точках поверхности касательная плоскость может не существовать).

    Касательная плоскость перпендикулярна вектору и её уравнение имеет вид:

    Fx`(x - x0) + Fy`(y - y0) + Fz`(z -z0) = 0 (5.7).

    Если уравнение поверхности задано в виде z = f(х, y), то уравнение касательной плоскости примет вид: z - z0 = fx`(x - x0) + fy`(y - y0) (5.7`).

    Прямая, проведенная через точку М00, у0, z0) поверхности перпендикулярно касательной плоскости, называется нормалью к поверхности. Ее направление определяется вектором `N и канонические уравнения примут вид:

    (5.8),

    а если уравнение поверхности задано в виде z = f(x, y), то

    (5.8`).

    Обсудим геометрический смысл частных производных и полного дифференциала функции z = f(x, y) (F(x, y, z) = 0). Проведем через точку Р(х0, у0, z0) плоскость х = х0. В сечении ее поверхностью (рис. 5.1) получим линию. Если дать приращение Dy = MN = PТ` переменной у (при неизменном х), функция получит приращение Dyz = TT`. Очевидно, предел , где b – угол, образуемый касательной к кривой в точке Р0 с положительным направлением оси Оу. Аналогично, , где a – угол, образуемый касательной к сечению поверхности z = f(x, y) плоскостью у = у0 с положительным направлением оси Ох. Если в (5.7') положим х –х0 =Dх, у – у0 = Dу, то оказывается, что правая часть ее – полный дифференциал функции z = f(x, y) и z – z0 = dz, т.е. полный дифференциал функции двух переменных в точке М(х, у), соответствующий приращениям и независимых переменных х и у, равен соответствующему приращению аппликаты z плоскости касательной к поверхности z = f(x, y).

     

    Контрольные вопросы.

    1) Какая точка называется особой точкой поверхности?

    2) Какая плоскость называется касательной к поверхности в точке?

    3) Что называется нормалью к поверхности?

    4) В чём состоит геометрический смысл частных производных и полного дифференциала функции z=f (x, y)?






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.