Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Исследование функций с помощью производных.
1. Выяснить, является ли функция возрастающей (убывающей) и найти области возрастания (убывания) функции можно, используя теоремы: Если функция f(x), имеющая производную на отрезке [a, b] возрастает на этом отрезке, то ее производная на отрезке [a, b] неотрицательна, т.е. f `(x) ³ 0. Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b), причем f `(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b]. Если f(x) убывает на отрезке [a, b], то f `(x) £ 0 на этом отрезке. Если f `(x) < 0 в интервале (a, b), то f(x) убывает на отрезке [a, b]. Полагаем, что f(x) непрерывна на [a, b] и дифференцируема на (a, b). Геометрическая интерпретация: если функция возрастает, то касательная к ее графику образует острый угол с осью Ох; если функция убывает – угол наклона касательной – тупой.
2. Экстремумы. Говорят, что функция f(x) имеет максимум (max) в точке х0, если значение функции в этой точке больше, чем значения во всех точках малой окресности ее, т.е. если при достаточно малом h > 0 выполняются неравенства: f(x0 – h) < f(x0) и f(x0 + h) < f(x0). Функция f(x) имеет минимум (min ) в точке х0, если значение функции в этой точке меньше, чем значения во всех точках малой окрестности ее, т.е. если при достаточно малом h > 0 выполняются неравенства: f(x0 – h) > f(x0) и f(x0 + h) > f(x0). Максимум (минимум) функции называется ее экстремумом. Точки максимума (минимума) – точками экстремума функции. Рассмотрим метод отыскания экстремумов. Необходимое условие существования экстремума можно сформулировать так: Если функция f(x) в точке х0 имеет экстремум, то производная f `(x0) обращается в нуль или не существует. Это означает, что функция может иметь экстремум только в этих точках, но может и не иметь его в них. Точки эти (в которых производная равна нулю или не существует) называются критическими точками первого рода. Достаточное условие экстремума можно сформулировать так: Если х0 – критическая точка функции f(x) и при произвольном достаточно малом h > 0 выполняется неравенство f `(x0 – h) > 0, f `(x0 + h) < 0, то функция f(x) имеет в точке х0 максимум; если f `(x0 – h) < 0, a f `(x0 + h) > 0, то функция f(x) в точке х0 имеет минимум. (Если знаки f `(x0 – h) и f `(x0 + h) одинаковы, то функция f(x) в точке х0 экстремума не имеет). (Наличие экстремума можно определить и с помощью второй производной. Если , a то в точке имеет экстремум- max, если и min, если .) Отметим, что: а) функция, определенная на отрезке, может достигать экстремума только во внутренних точках этого отрезка; б) экстремум функции не обязательно является наибольшим (наименьшим) значением функции на рассматриваемом отрезке. 3. Наибольшее и наименьшее значения функции, непрерывной на отрезке [a, b] можно отыскать, выбрав их из значений функции на концах и в критических точках внутри этого отрезка. 4. Выпуклость и вогнутость графика функции. Говорят, что кривая y = f(x) выпукла на интервале (a, b), если все точки ее лежат ниже любой ее касательной, проведенной на этом интервале, (вогнутой – если все ее точки лежат выше любой касательной, проведенной на этом интервале). Условия выпуклости (вогнутости) графика функции на интервале (a, b) можно сформулировать так: Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, т.е. f ``(x) < 0, то кривая y = f(x) на этом интервале выпукла; если вторая производная положительна, т.е f ``(x) > 0 – кривая вогнута.
Если вторая производная положительна, то говорят, что «есть дождь» – случай б) на рисунке – кривая y2 = f2(x) вогнута и «струи дождя» собираются в чаше. Точка, отделяющая вогнутую часть графика от выпуклой, называется точкой перегиба. Можно доказать справедливость утверждения: Если f ``(а) = 0 или f ``(a) не существует и при переходе через значение х = а, f ``(x) меняет знак, то точка кривой y = f(x) с абсциссой х = а есть точка перегиба. В этой формуле объединены необходимое (равенство нулю или «несуществование» второй производной в некоторой точке) и достаточное (перемена знака второй производной) условия наличия точки перегиба. Точки, в которых выполняются указанные необходимые условия, называются критическими точками второго рода. Отметим, что интервалы выпуклости и вогнутости могут быть разделены и точкой разрыва функции, не являющейся точкой перегиба. 5. Асимптоты. Прямая L называется асимптотой кривой y = f(x), если расстояние точки М(х, у) кривой от прямой L стремится к нулю при неограниченном удалении этой точки по кривой от начала координат (т.е. при стремлении хотя бы одной из координат точки к бесконечности). Прямая х = а является вертикальной асимптотой кривой y = f(x), если или (подразумевается, что исследуются и левый и правый пределы, т.е. и ). Прямая у = b является горизонтальной асимптотой кривой y = f(x), если существует предел или . В общем случае кривая может иметь и наклонную асимптоту, уравнение которой можно записать в виде y = kx + b. Определим значения k и b с помощью рис.4.4 М(х, у) – точка на кривой, N(x, y) – точка на асимптоте. Отрезок МР – расстояние от точки М до асимптоты. По определению . Из треугольника MNP определим . Т.к. j = arctg к – постоянная,
. При постоянном b , и, следовательно, , откуда . Зная k находим b: . Т.о. прямая y = kx + b является наклонной асимптотой кривой y = f(x), если существуют пределы (4.36) и (4.37) или (4.36`) и (4.37`). (Если хотя бы один из каждых двух пределов не существует, то кривая наклонных асимптот не имеет). Рекомендуемая схема построения графиков по характерным точкам: 1. Найти область определения функции. 2. Исследовать функцию на четность и нечетность. 3. Найти точки пересечения графика функции с осями координат. 4. Исследовать функцию на непрерывность, найти (если они существуют) точки разрыва и установить характер разрыва; найти асимптоты кривой. 5. Найти интервалы возрастания и убывания функции и ее экстремумы. 6. Найти интервалы выпуклости и вогнутости кривой и точки ее перегиба. Отметим, что иногда порядок исследования целесообразно выбирать, исходя из особенностей функции. Может быть пополнен и перечень исследуемых характеристик (например вопросом о периодичности функции). Контрольные вопросы. 1) Как найти интервалы возрастания и убывания функции? 2) Что называют точками экстремума функции и как находятся? 3) Как найти наибольшее и наименьшее значение функции? 4) Как найти интервалы выпуклости, вогнутости графика функции, точки перегиба? 5) Что называют асимптотой кривой y=f(x)?
|