![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Производная.
Рассмотрим функцию у = f(x) определенную на некотором интервале. Дадим аргументу х приращение Dх. Новому значению аргумента х + Dх будет, в общем случае, соответствовать новое значение функции f (x + Dх), т.е. функция также получит некоторое приращение Dу = f (x + Dх) – f (x). Составим отношение
Производной данной функции y = f(x) по аргументу х называют предел отношения приращения функции Dу к приращению аргумента Dх, когда последнее произвольным образом стремится к нулю. В общем случае производная также является некоторой функцией от х. (f `(x) = j(x)). Конкретное значение производной при х = а обозначают f `(а) или у`/х = а. Операцию нахождения производной называют дифференцированием функции.
![]() Угол наклона касательной определится выражением Геометрический смысл производной очевиден: Значение производной f`(x) при данном значении аргумента х равняется тангенсу угла наклона касательной к графику функции f(x) в соответствующей точке М(х, у). Это, с учетом (2.8), позволяет записать уравнение касательной к кривой у = f(x) в точке (х0, у0) в виде у – у0 = f `(x0)(x – x0) (4.3). Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Говорят, что если функция y = f(x) имеет производную в точке х = х0, т.е. если существует предел Теорема. Если функция у = f(х) дифференцируема в некоторой точке, то она в этой точке непрерывна. Действительно, если
Рассмотрим функцию Рассмотрим производные основных элементарных функций. Пусть у = х2. Очевидно Dу = (x + Dx)2 – х2 = 2xDx + D2 х и Если у = sinx, то y` = cosx (4.5) Если у = cosx, то y` = – sinx (4.6) Производная постоянной равна нулю, т.е. если у = с, где с – постоянная, то с` = 0 (4.7) Постоянный множитель можно выносить за знак производной, если у = c f(x), где c = const, то y` = cf `(x) (4.8). Производная суммы конечного числа дифференцируемых функций равна сумме производных этих функций, т.е. если ( Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Производная произведения двух дифференцируемых функций равна произведению производной первой функции на вторую плюс произведение первой функции на производную второй, т.е. если у = uv, то y` = u`v + uv` (4.10). Производная дроби (частного от деления двух функций) равна дроби, знаменатель которой есть квадрат знаменателя данной дроби, а числитель есть разность произведений производной числителя на знаменатель и производной знаменателя на числитель, т.е. если y = u / v, то Используя приведенные соотношения можно получить производные других элементарных функций и составить таблицу производных. Приведем их, опуская доказательства. Если у = logax, то Если y = tg x, то Если у = ах (a > 0), у` = ахln a (4.15) и (ех)` = ex (4.15`) Рассмотрим особенности нахождения производной от сложной функции - функции вида у = F(u), где u = f(x), или у = F(f(x). Переменную u называют промежуточным аргументом. Теорема: Если функция u = f(x) имеет в некоторой точке х производную ux` = f `(x), а функция y = F(u), имеет при соответсвующем значении u производную y`u = F(u), то сложная функция у = F(f(x)) в указаной точке х также имеет производную y`х = F`u(u)f `(x) или y`x=y`uu`x (4.16) (Иначе – производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента). Пример: y = sin x2 => y = sin u, u = x2, используя (4.16). (4.5) и (4.4) получим: y`u = cos u, u`x = 2x, y`x = 2xcos x2. Приведенное правило позволяет получить производную неявной функции т.е. функции, заданной уравнением F(x, y) = 0 (4.17). (Отметим, что если в (4.17) удастся привести уравнение к виду у = f (х), то функция оказывается заданной в явном виде. Операция эта осуществима далеко не всегда). Пример: F(x, y) = sin (x + y) – e(x – y) = 0. Дифференцируя обе части равенства по х и помня, что у есть функция от х, получим: В некоторых случаях, прежде чем найти производную, бывает удобно прологарифмировать уравнение, задающее функцию. Пусть у = хn. Прологарифмировав обе части равенства, получим ln y = n ln x, откуда Найдем производную обратной функции. Пусть y = f(x) возрастающая или убывающая функция, определенная на некотором интервале (a, b), (a < b). (Если большему значению аргумента соответствует большее значение функции (f(x2) > f(x1) при x2 > x1) ее называют возрастающей. Если f(x2) < f(x1) при x2 > x1 функция у бывающая). Для определенности (без потери общности) рассмотрим возрастающую функцию. Из определения ее очевидно, что значения х и у связывает взаимно однозначное соответствие. Рассматривая у как аргумент, а х как функцию, свяжем их значения соотношением х = j(у). Эта функция является обратной для функции y = f(x), а функция y = f(x) обратной для х = j(у). Эти функции имеют один и тот же график и функция х = j(у) находится как решение уравнения y = f(x) относительно х. Отметим, что: 1. Если возрастающая (убывающая) функция непрерывна на отрезке [a, b], причем f(a) = c, f(b) = d, то обратная функция определена и непрерывна на отрезке [c, d]; 2. Если функция y = f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций (однозначных). Пример: у = х2 на интервале (–¥, ¥) не является ни возрастающей, ни убывающей и имеет две обратные функции: Теорема: Если для функции y = f(x) существует обратная функция х = j(у), которая в рассматриваемой точке у имеет производрую j`(у) отличную от нуля, то в соответствующей точке х функция y = f(x) имеет производную f `(x) равную 1 / j`(у), т.е. справедлива формула f`(x) = 1 / j`(у) (4.18). Используя полученное правило, пополним таблицу производных: Если y = arcsin x, то Если y = arctg x, то
![]()
(Напомним, что sin2x + cos2x=1; sin2x = 2sinx cosx) у = хх. Прологарифмировав обе части равенства по основанию е получим lnу = xlnx. Продифференцировав обе части равенства, найдем (lny)` = (xlnx)` => y`/ у = lnx + 1 => y` = xx (lnx + 1). Выведем формулу (4.19). Итак, y = arc sin x => sin y = sin arc sin x => x = sin y. Воспользуемся (4.18): В ряде случаев функциональную зависимость (линию, поверхность) удобно задавать в параметрической форме: каждая неизвестная (координата точки) представляется функцией параметра t, причём каждому значению параметра соответствуют координаты некоторой точки (значения неизвестных, удовлетворяющих обычному уравнению зависимости); (От параметрического задания функции легко перейти к привычному Рассмотрим понятие производных высшего порядка. Производную от функции y = f(x) (ее называют первой), обозначаемую y` = f `(x) = dy / dx можно рассматривать как новую (по отношению к f(x)) функцию той же переменной. Эта функция, в свою очередь, может быть продифференцирована, т.е. найдена первая производная от первой производной исходной функции f(x); (y`)`=(f`(x))`. Она называется второй производной, обозначается y`` = f ``(x) = d2y / dx2 и является производной высшего (второго) порядка. Очевидно, что таким же образом может быть определена производная n–го порядка (n Î Z), обозначаемая y(n) = f(n)(x) (n – берется в скобках, чтобы не путать с показателем степени). Иногда порядок производной обозначают римскими цифрами. Контрольные вопросы.
1) В чём состоит геометрический, механический смысл производной? 2) Исходя из определения 3) Может ли функция иметь производную в точке, в которой она разрывна? 4) Функция в данной точке дифференцируема. Следует ли отсюда, что она непрерывна в этой точке? 5) Сформулируйте общие правила дифференцирования функции и напишите формулы дифференцирования основных элементарных функций. 6) Как находится производная сложной функции? 7) Как найти производную неявной функции? 8) Что называют обратной функций? 9) Как находится производная обратной функции 10) Как находится производная функции, заданной параметрически? 11) Дать понятие производных высшего порядка.
|