![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные теоремы о пределах.
1. Предел алгебраической суммы двух, трех и вообще определенного числа переменных равен алгебраической сумме пределов этих переменных, т.е. lim (u1 + u2 + … + un) = lim u1+ lim u2+ … + lim un 2. Предел произведения определенного числа переменнных равен произведению пределов этих переменных, т.е. lim (u1 × u2 × … × un) = lim u1 × lim u2 × … × lim un 3. Предел частного двух переменных равен частному пределов этих переменных, если предел знаменателя отличен от нуля, т.е. 3. Если для соответствующих значений функций u = u(x), z = z(x), v = v(x) выполняются неравенства u £ z £ v и при этом u(x) и v(x) при х ® а (или х ® ¥ ) стремятся к одному и тому же пределу b, то z = z(x) при х ® а (или х ® ¥) стремится к тому же пределу. Теорема 4 позволяет доказать справедливость важного соотношения, называемого первым замечательным пределом. Из (3.1) следует эквивалентность бесконечно малых х и sin x: sin x ~x.
Еще одно важное соотношение теории пределов, называемое вторым замечательным пределом имеет вид: Число е – иррациональное (также как и число p) и может быть записано в виде бесконечной десятичной непериодической дроби е = 2, 71828…; играет важную роль в вычислительной математике, служа, в частности, основанием натурального логарифма, обозначаемого ln x = logex. Функцию у = ех называют экспоненциальной функцией (иногда обозначается как ехр х). В решении задач теории пределов могут быть полезны следующие равенства: Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Непрерывность функций. Функцию у = f(х) называют непрерывной в точке а если: 1.Эта функция определена в некоторой окрестности точки а и в самой точке; 2.Существует предел функции Функцию f(х) называют непрерывной в точке х0, если она определена в этой точке и некоторой окрестности ее и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т.е.
Приведем формулировку теоремы: Всякая элементарная функция непрерывна в каждой точке, в которой она определена и получим важное для решения задач теории пределов следствие. Запишем условие непрерывности в виде Пример: В ряде случаев удобно использовать следующее соотношение:
Говорят, что если функция f(x) непрерывна в каждой точке некоторого интервала (а, b), где a < b, то функция непрерывна на этом интервале. Точка внутри или на границе области определения, в которой нарушается условие непрерывности, называется точкой разрыва. Если существуют конечные пределы Рассмотрим некоторые свойства непрерывных функций (доказательства теорем можно найти в рекомендуемой литературе). 1. Если функция f(x) непрерывна на некотором отрезке [a, b], то на этом отрезке найдется по крайней мере одна точка х = х1 такая, что значение функции в этой точке будет удовлетворять соотношению f(x1) ³ f(x), где х – любая другая точка отрезка, и найдется по крайней мере одна точка х2 такая, что значение функции в этой точке будет удовлетворять соотношению f(x2) ≤ f(x). Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе
(Отметим, что на интервале (а, b) утверждение теоремы может оказаться неверным. Пример: у = х – функция не имеет на интервале (а, b) наибольшего и наименьшего значений, т.к. не достигает значений а и b!)
3. Если функция f(x) определена и непрерывна на отрезке [a, b] и на концах этого отрезка принимает неравные значения f(a) = A и f(b) = B то, каково бы ни было число m, заключенное между числами А и В, найдется такая точка х = с, заключенная между a и b, что f(c) = m (легко видеть, что теорема 2 является частным случаем теоремы 3). Следствие: Если функция f(x) непрерывна на некотором интервале и принимает на нем наибольшее и наименьшее значения, то на этом интервале она принимает по крайней мере один раз любое значение, заключенное между ее наибольшим и наименьшим значениями. Контрольные вопросы. 1) Что называется пределом переменной, пределом функции? 2) Что называется бесконечно малой функцией? 3) Поясните графически первый замечательный предел? 4) Какая функция называется непрерывной в точке? 5) Какая точка называется точкой разрыва I рода, II рода (в чём отличие)? 6) Что является наибольшим и наименьшим значением функции на отрезке?
|