Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Поверхности второго порядка.
Если линейное уравнение в трехмерном декартовом базисе однозначно определяет плоскость, любое нелинейное уравнение, содержащее х, у, z описывает какую – то иную поверхность. Если уравнение имеет вид Ах2 + Ву2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Kz + L = 0, то оно описывает поверхность второго порядка (общее уравнение поверхности второго порядка). Выбором или преобразованием декартовых координат уравнение можно максимально упростить, приведя к одной из следующих форм, описывающих соответствующую поверхность. 1. Канонические уравнения цилиндров второго порядка, образующие которых параллельны оси Oz, а направляющими служат соответствующие кривые второго порядка, лежащие в плоскости хОу: (2.43), (2.44), у2 = 2рх (2.45) эллиптический, гиперболический и параболический цилиндры соответственно. (Напомним, что цилиндрической называют поверхность, полученную перемещением прямой, называемой образующей, параллельно самой себе. Линию пересечения этой поверхности с плоскостью, перпендикулярной образующей, называют направляющей – она определяет форму поверхности). По аналогии можно записать уравнения таких же цилиндрических поверхностей с образующими, параллельными оси Оу и оси Oх. Направляющую можно задать, как линию пересечения поверхности цилиндра и соответствующей координатной плоскости, т.е. системой уравнений вида:
2. Уравнения конуса второго порядка с вершиной в начале координат: (2.46) (осями конуса служат оси Oz, Oy и Ох соответственно) 3. Каноническое уравнение эллипсоида: (2.47). Частными случаями являются эллипсоиды вращения, например – поверхность, полученная вращением эллипса вокруг оси Оz (При а > с эллипсоид сжат, при a < c – удлинен) и сфера (при а = b = с = r получим х2 + у2+ z2 + = r2 – уравнение сферы радиуса r с центром в начале координат). 4. Каноническое уравнение однополостногогиперболоида (2.48) (знак “ – ” может стоять перед любым из трех слагаемых левой части – это изменяет только положение поверхности в пространстве). Частные случаи – однополостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Oz (мнимой оси гиперболы). 5. Каноническое уравнение двухполостного гиперболоида (2.49) (знак “ – ” может стоять перед любым из трех слагаемых левой части). Частные случаи – двухполостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Оz (действительной оси гиперболы). 6. Каноническое уравнение эллиптического параболоида (p > 0, q > 0) (2.50) (переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве). 7. Каноническое уравнение гиперболического параболоида (p > 0, q > 0) (2.51) (переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве). Отметим, что представление об особенностях (форме) этих поверхностей легко получить, рассматривая сечения этих поверхностей плоскостями, перпендикулярными осям координат.
контрольные вопросы. 1) Какое множество точек в пространстве определяет уравнение ? 2) Каковы канонические уравнения цилиндров второго порядка; конуса второго порядка; эллипсоида; однополостного гиперболоида; двухполостного гиперболоида; эллиптического параболоида; гиперболического параболоида?
|