Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Решение. Запишем термохимическое уравнение реакции сгорания:
Запишем термохимическое уравнение реакции сгорания: C3H8 + 5O2 = 3CO2 + 4H2O(г); ∆ Hхр Применяя к исходному уравнению следствие из закона Гесса, получаем: Подставим табличные значения теплот образования, учитывая, что теплоты образования простых веществ приняты равными нулю: ∆ Hхр = 3(–393, 51) + 4(–241, 83) – (–103, 92) = –2043, 93 кДж/моль. Найденное количество тепла выделяется при сгорании одного моля пропана. Напомним, что 1 моль газа при нормальных условиях занимает объем VM = 22, 4 л/моль. По условию задачи сгорает , т. е.: Количество тепла, выделяемого при сгорании 1 м3 пропана, равно:
Надо подчеркнуть, что следствие из закона Гесса широко используется также для расчета изменения энтропии и изобарных потенциалов при химических реакциях.
Таблица 2.1 Термодинамические функции D Нобр (кДж/моль) и S 0 (Дж/ моль∙ К) некоторых веществ при стандартных условиях
Таблица 2.2 Стандартные теплоты сгорания
Все процессы, протекающие в термодинамических системах, можно разделить на два класса – самопроизвольные и несамопроизвольные. Самопроизвольные процессы всегда протекают необратимо, а несамопроизвольные могут быть обратимыми. Обратимым называют такой процесс, который можно в любой момент заставить протекать в обратном направлении через те же стадии, по которым он протекал в прямом направлении. Обратимые процессы никогда не протекают самопроизвольно, они всегда требуют внешних воздействий (совершения работы и подведения или отведения тепла). Самопроизвольные процессы в термодинамических системах протекают самопроизвольно, без каких-либо внешних воздействий. Вода сама течёт вниз по склону, теплота переходит от нагретых тел к холодным, а не наоборот. Самопроизвольные процессы, протекая в одном направлении, никогда затем не идут в обратном направлении самопроизвольно, они однонаправленны. Первое начало термодинамики ничего не говорит о направлении процессов, протекающих в природе и технике. Второе начало (закон) термодинамики даёт такие предсказания. Математическое выражение второго начала термодинамики осуществляется с помощью введения специальной аддитивной функции состояния, которая называется энтропией, малое изменение которой dS по определению равно:
где Т – абсолютная температура системы. Размерность энтропии – Дж/К. Постулируем основное неравенство, являющееся одним из математических выражений второго начала термодинамики:
Величина называется приведённой теплотой. Изменение энтропии при протекании процесса в системе больше или равно сумме приведённых теплот в этом процессе. Если система замкнута (изолирована), она не обменивается энергией с окружающей средой и неравенство (2.11) приобретает вид (2.12)
Неравенство (2.12) называется законом возрастания энтропии, являющимся наиболее общей формулировкой второго начала термодинамики: энтропия изолированной системы при любых протекающих в ней процессах никогда не убывает, она либо растёт, либо остаётся постоянной. Последнее реализуется, когда система пребывает в состоянии равновесия. При протекании самопроизвольного процесса в замкнутой системе энтропия всегда растёт. Очевидно, энтропия в системе СИ измеряется в Дж/К. Статистический смысл энтропии. Макроскопическое состояние термодинамической системы задаётся её макроскопическими переменными, такими как объём, давление, температура, концентрации и другие. Если для двух состояний системы эти переменные одинаковы, то и состояния одинаковы. Однако при микроскопическом рассмотрении системы легко обнаруживается, что данному макроскопическому состоянию системы соответствует весьма большое число неотличимых с макроскопической точки зрения микроскопических состояний. Так, например, данной величине давления газа на стенку сосуда соответствуют в разные моменты времени разные положения различных молекул по отношению друг к другу и удары молекул о стенку сосуда. Можно говорить о неком, при этом весьма большом, среднем числе W микросостояний системы, соответствующих данному макроскопическому состоянию. Больцман показал, что абсолютная энтропия системы связана с логарифмом среднего числа микросостояний системы W:
где k – константа Больцмана, k = 1, 381·10-23 Дж/К. Из формулы (2.13) видно, что энтропия – мера статистического беспорядка в системе. При переходе вещества от кристаллического состояния к жидкому, а затем от жидкости к газу, его энтропия растёт, значит, растёт и число микросостояний, последовательно отвечающих каждому из этих макроскопических состояний. Учитывая статистический смысл энтропии, второе начало термодинамики можно сформулировать следующим образом: изолированная система, находящаяся в неравновесном состоянии, стремится к состоянию равновесия, которому отвечает наибольшее среднее число микросостояний системы. Для того чтобы выбрать начало отсчета абсолютной энтропии термодинамической системы, используют третье начало термодинамики, которое формулируется согласно Планку следующим образом: энтропия всех индивидуальных веществ, существующих в виде идеальных кристаллов при температуре абсолютного нуля, равна нулю. Предположим, что температура одного моля индивидуального вещества при постоянном давлении, например стандартном, увеличивается от абсолютного нуля (где вещество находится в состоянии идеального кристалла) до температуры Т, где вещество находится в газообразном состоянии. Тогда осуществляются следующие процессы нагревания вещества и его переходов из одних агрегатных состояний в другие.
Эти процессы могут протекать обратимо. Энтропия в конечном состоянии с температурой Т равна сумме изменений энтропии, произошедших на всех предыдущих этапах. Определенная таким образом величина S(T) есть абсолютная энтропия одного моля индивидуального вещества при температуре T и давлении P, выражается в Дж/(К·моль). В термохимических таблицах обычно приводятся стандартные мольные абсолютные энтропии индивидуальных веществ S 0, определяемые для стандартных условий (Т = 298, 15 К, Р = 101325 Па) (см. табл. 2.1). Поскольку энтропия – аддитивная функция состояния, расчет изменения энтропии химической реакции , протекающей до конца, проводится аналогично расчету энтальпии химической реакции :
где , – абсолютные мольные энтропии продуктов реакции и исходных веществ соответственно в Дж/(К·моль). В уравнении (2.14), в отличие от подсчета величины по (2.8), следует учитывать стандартные мольные энтропии как сложных, так и простых веществ. Простым веществам невозможно приписать нулевые значения стандартных энтропий. В случае закрытой системы постоянного состава, которая может совершать только работу расширения, можно объединить I и II начала термодинамики для обратимого процесса. Для этого в уравнение (2.2) подставим величину из уравнения (2.9) и получим (2.15):
Это уравнение часто называют фундаментальным уравнением для закрытой системы постоянного состава. Приведем некоторые важные положения термодинамики без доказательства. Вводится функция состояния G термодинамической системы, определяемая равенством . Функция G называется изобарно-изотермическим потенциалом, или просто изобарным потенциалом, или потенциалом Гиббса, измеряется в джоулях. В изобарно-изотермических условиях для закрытой термодинамической системы имеется важный критерий самопроизвольности протекания процессов:
где ∆ G – изменение изобарно-изотермического потенциала или потенциала Гиббса при протекании некоторого процесса в термодинамической системе. Критерий протекания самопроизвольных процессов: процесс в термодинамической системе протекает самопроизвольно при постоянных давлении и температуре, если изменение изобарного потенциала в системе меньше нуля (∆ G < 0). Если ∆ G = 0, то система находится в состоянии равновесия;
Величина ∆ G 0 вычисляется так, как если бы химическая реакция протекала до конца. Величины ∆ Н 0 и ∆ S 0 вычисляются по формулам (2.8) и (2.14). Важность величины ∆ G 0 заключается в том, что она связана с величиной константы химического равновесия K выражением (2.18):
Отметим, что в выражении (2.18) константа равновесия K безразмерна. Эта величина выражается или через парциальные давления реагентов, деленные на стандартное давление, или через концентрации реагентов, деленные на стандартные концентрации (например, 1 моль/л). Выражение (2.18), если вычислена величина ∆ G 0для конкретной реакции, позволяет судить о величине константы равновесия и о том, в сторону какой реакции сдвинуто равновесие (K < 1 – в сторону исходных реагентов, K > 1 – в сторону продуктов реакции, K = 1 – равновесие примерно посередине).
Пример 3. Рассмотрите протекание реакции разложения перхлората калия в закрытой системе:
4KClO4(тв) = 2KClO3(тв) + 2KCl(г) + 5O2(г); ∆ H0хр = 50 кДж.
|