Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Химическая термодинамика
Химическая термодинамика изучает законы обмена энергией макроскопических систем с окружающей средой, а также превращения одних форм энергии в другие внутри систем во время протекания в них физических и химических процессов. Законы термодинамики очень важны для химии, так как позволяют не только определять вид и величину энергии, выделяемой или поглощаемой в ходе химических реакций, но и предсказывать направление протекания реакций. Необходимо знать важнейшие понятия химической термодинамики. Термодинамическая система – макроскопическая часть окружающего мира, в которой протекают различные физические и химические процессы. Открытые системы обмениваются веществом и энергией с окружающей средой. Закрытые системы обмениваются энергией, но не обмениваются веществом. Замкнутые (изолированные) системы не обмениваются ни веществом, ни энергией с окружающей средой. Термодинамические переменные – макроскопические величины, описывающие состояние и свойства системы и ее окружения, которые могут изменяться при протекании различных процессов. Эти величины могут быть измерены или вычислены (масса m, объем V, давление P, температура Т, показатель преломления n, энергия E, плотность ρ, диэлектрическая проницаемость ε и т. п.). Термодинамические параметры – макроскопические величины, характеризующие систему или ее окружение и не изменяющиеся при протекании тех или иных процессов. Делятся на два типа: экстенсивные и интенсивные. Экстенсивные переменные зависят от числа частиц и, как правило, аддитивны (величина целого равна сумме величин частей): объём, масса, энергия и т. п. Интенсивные переменные напрямую не зависят от общего числа частиц: давление, температура, концентрация, диэлектрическая проницаемость и т. д. Фазы системы – однородные макроскопические части системы, имеющие поверхности раздела (лёд и вода, жидкость и её насыщенный пар в сосуде и т. п.). Компоненты системы – составные части системы, способные к независимому существованию. Состояния системы бывают равновесные и неравновесные. Состояние равновесно, если интенсивные переменные Р и Т не изменяются от точки к точке в системе, другие интенсивные переменные внутри каждой конкретной фазы также неизменны и испытывают скачок только на границах раздела фаз, при этом отсутствуют какие-либо перемещения макроскопических частей системы относительно друг друга. Состояние неравновесно, если в разных частях системы значения интенсивных параметров различны и имеются макроскопические перемещения внутри системы. Всякая макроскопическая система, предоставленная сама себе, стремится к состоянию равновесия. Функция термодинамических переменных F (P, V, T, …) системы называется ее функцией состояния, если ее значение зависит только от величин термодинамических переменных в данном конкретном равновесном состоянии системы и не зависит от предыдущих состояний системы. Внутренняя энергия системы – её важнейшая функция состояния. Полная энергия термодинамической системы в системе отсчёта, где термодинамическая система покоится как целое, называется внутренней энергией. Часто обозначается латинской буквой U, и ее величина определяется следующим образом:
где – кинетическая энергия всех частиц термодинамической системы, – потенциальная энергия их взаимодействия. Эту функцию невозможно не только детально записать, но и вычислить для конкретной системы. Однако экспериментально или теоретически легко определить величину изменения этой функции при переходе системы из одного состояния в другое. Первое начало (закон) термодинамики – закон сохранения энергии в приложении к термодинамическим системам. Рассмотрим для простоты некоторую закрытую систему. Поступление энергии в эту систему из её окружения может протекать двумя способами: 1 При контакте системы с окружающей средой без каких-либо перемещений ее макроскопических стенок. Такой способ называют теплообменом, а количество энергии, поступившей при этом, называют теплотой. 2 При перемещении макроскопических стенок системы. Количество энергии, переданное таким путем, называется работой. Отсюда следует уравнение (2.2):
Здесь DU – изменение внутренней энергии системы. Оно не зависит от пути процесса, если начальное и конечное состояния системы равновесны, так как U – функция состояния. Величина Q – количество энергии, поступившей в систему в процессе теплообмена, A – количество энергии, поступившей в систему за счет работы. В отличие от DU, величины Q и A зависят в общем случае от пути процесса, поэтому не следует говорить о количестве теплоты и работы в системе. В системе СИ размерности внутренней энергии, теплоты и работы одинаковы и выражаются в Дж. Правило знаков. В формуле (2.2) предполагается, что DU, Q и A > 0, когда энергия и теплота поступают в систему, работа совершается над системой. Уравнение (2.2) является математической записью первого начала термодинамики, или закона сохранения энергии для закрытой системы: изменение энергии закрытой системы равно подведенной к системе теплоте плюс совершенной над системой работе. Изохорный процесс (V = const). Как известно, при небольшом изменении объёма системы величина работы определяется формулой
Так как V = const, получаем уравнение (2.4):
Индекс «n»у теплоты Q означает, что процесс идёт при постоянном объёме. Из (2.4) видно, что теплота, полученная или отданная в изохорном процессе, не зависит от пути его протекания, а определяется только конечным и начальным равновесными состояниями системы. Изобарный процесс (P = const).
Индекс «р» у теплоты Q означает, что процесс идёт при постоянном давлении. Произведём замену переменных в первом слагаемом правой части, выразив величину P∆ V через величину D(PV):
Функция состояния термодинамической системы H = U + PV называется энтальпией, или тепловой функцией (теплосодержанием) системы. Эта величина измеряется в джоулях. Её изменение – это энтальпия процесса.
Теплота, полученная или отданная в изобарном процессе, не зависит от пути его протекания, а определяется только конечным и начальным равновесными состояниями системы. Если уравнения (2.4) и (2.7) применить к произвольной химической реакции, протекающей до конца, то получим формулировку известного в термохимии закона Гесса: тепловой эффект химической реакции при постоянном объеме или постоянном давлении не зависит от пути ее протекания и последовательности ее стадий, а определяется только химическим составом и физическим состоянием конечных продуктов и исходных реагентов. При Q < 0 (теплота выделяется системой) реакция называется экзотермической, а при Q > 0 (теплота поглощается системой) – эндотермической. Следовательно, ∆ U < 0, ∆ H < 0 отвечает экзотермической реакции, а ∆ U > 0, ∆ H > 0 эндотермической реакции соответственно. Закон Гесса позволяет легко рассчитывать тепловые эффекты подавляющего большинства практически важных реакций, пользуясь накопленными экспериментальными данными для других реакций, которые сведены в специальные таблицы. Расчёты обычно ведут для изобарных процессов в стандартных условиях: давление равно 101 325 Па (1 физ. атмосфере, или 760 мм рт. ст.), температура равна 298, 15 К (25 °С). При этом используется следствие из закона Гесса, согласно которому тепловой эффект химической реакции равен
где n i и n j – стехиометрические коэффициенты уравнения реакции для продуктов (индекс i) и исходных веществ (индекс j), и – мольные энтальпии (теплоты) образования продуктов реакции и исходных веществ соответственно. Верхний индекс 0 повсеместно указывает на стандартные условия. Теплотой образования вещества (DH 0 ) называется тепловой эффект реакции образования 1 моля сложного вещества из простых веществ, устойчивых при стандартных условиях. Теплоты образования простых веществ зависят от агрегатного состояния вещества, и для их устойчивых состояний в стандартных условиях эти теплоты приняты равными нулю. Стандартные теплоты образования ряда сложных веществ из простых веществ приведены в табл. 2.1. Тепловой эффект химической реакции можно также вычислить, используя второе следствие из закона Гесса: тепловой эффект химической реакции равен
где и – мольные энтальпии (теплоты) сгорания продуктов реакции и исходных веществ соответственно. Теплотой сгорания вещества (DHсгор.) называется тепловой эффект реакции окисления 1 моля вещества кислородом с образованием высших (устойчивых) оксидов. Для органических соединений теплотой сгорания называется тепловой эффект реакции полного сгорания 1 моля данного органического вещества с образованием CO2 и H2O. Стандартные теплоты сгорания приведены в табл. 2.2. Обратите внимание на то, что теплоты сгорания высших оксидов (H2O, CO2 и т. п.) также приняты равными нулю. Пример 1. Вычислите стандартную теплоту образования бензола на основании термохимического уравнения реакции его сгорания: C6H6 (ж) + O2 = 6CO2 (г) + 3H2O(г); D Hхр = –3133 кДж/моль. Решение: По следствию из закона Гесса: (1) = 0, т. к. это простое вещество. Выразим из уравнения (1) теплоту образования бензола: . и подставим численные значения из табл. 2.1: = 6 (-393) + 3 (-242) + 3133 = 49 кДж/моль. Пример 2. Рассчитайте количество тепла, которое выделяется при сгорании одного кубометра пропана при нормальных условиях.
|