Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Кутова модуляція.






    Як раніше зазначалося при модуляції низькочастотне повідомлення ’’віддруковується’’ на амплітуді, частоті або фазі високочастотного несучого коливання. Проте, за означенням, гармонічним вважається коливання у якого амплітуда, частота та початкова фаза є сталими величинами.

    Тому необхідно поширити поняття гармонічного коливання на функцію більш загального вигляду, амплітуда частота та фаза якої можуть змінювати у часі. Поняття змінної амплітуди було розглянуто раніше при вивченні амплітудно-модульованих сигналів.

    При введенні поняття ’’миттєва частота’’ виникають труднощі методичного характеру. Річ у тім, що для того щоб визначити частоту коливання гармонічного сигналу необхідно знати поведінку сигналу на деякому проміжку часу (по крайній мірі хоча б на проміжку часу , тут - період гармонічного коливання). А як же бути з коливаннями у яких частота змінюється неперервно, адже для їх характеристики потрібна миттєва частота? Для цього вводиться узагальнене гармонічне коливання

    ,

    де - фаза гармонічного коливання, яка залежить від часу.

    У випадку сигналу зі сталою частотою - . Отже та

    .

    Тут частота стала і визначається як похідна кута .У загальному випадку ця похідна може не бути постійною. Похідну яка може змінюватися у часі називають миттєвою частотою. Отже між миттєвою частотою та кутом існують наступні співвідношення:

    , . (8.42)

    Модуляцію, при якій фаза узагальненого коливання залежить деяким чином від , називають кутовою модуляцією. Існують два типа кутової модуляції: фазова (ФМ) та частотна (ЧМ).

    Якщо миттєва частота змінюється пропорційно модулюючому сигналу то таку модуляцію називають частотною. Для частотної модуляції характерний зв’язок

    , (8.43)

    тут: - значення частоти у відсутності корисного сигналу; - деякий коефіцієнт пропорційності. При частотній модуляції фаза узагальненого сигналу буде рівною

    (8.44)

    Якщо фаза узагальненого гармонічного сигналу пов’язана з низькочастотним повідомленням залежністю

    (8.45)

    то таку модуляцію називають фазовою. - коефіцієнт пропорційності.

    Таким чином можна записати аналітичні залежності для частотно та фазово-модульованих сигналів:

    , (8.46)

    . (8.47)

    Викладки, аналогічні для випадку АМ сигналу, показують, що такі сигнали можна вважати квазігармонічними, якщо найвища частота у спектрі модулюючого сигналу та частота несучого коливання задовольняють нерівності

    .

    Аналіз ФМ та ЧМ -сигналів з математичної точки зору значно складніший, ніж дослідження АМ-коливань. Тому розглянемо найпростішу одно тональну модуляцію коли для ЧМ-сигналу , а для ФМ сигналу - .

    ФМ-сигнали.

    Фаза узагальненого гармонічного сигналу у випадку однотональної модуляції має вигляд . Отже миттєве значення частоти змінюється за законом

    .

    Таким чином при фазовій модуляції має місце зміна частоти. Максимальне відхилення частоти від несучої називається девіацією частоти. Очевидно, що девіація частоти при фазовій модуляції . Відношення девіації частоти до частоти модулюючого коливання називається індексом кутової модуляції і позначається літерою . У випадку ФМ-сигналів індекс кутової модуляції становить

    . (8.48)

    ЧМ-сигнали.

    При частотній модуляції фаза узагальненого гармонічного сигналу та миттєва частота згідно (8.44) та (8.43) відповідно дорівнюють:

    , (8.49)

    . (8.50)

    Як випливає з формули (8.49) при частотній модуляції спостерігається фазова модуляція. Девіація частоти при частотній модуляції - , а індекс кутової модуляції - . (8.51)

    Якщо взяти до уваги значення індекса кутової модуляції, то аналітична форма запису однотонального ЧМ та ФМ-сигналів будуть однотипні, а саме:

    , (8.52)

    . (8.53)

    Саме тому на осцилограмі практично неможливо виявити з яким типом модуляції маємо справу.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.