Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Элементы теории. Пусть отрезок [a, b] разбит на n равных частей точками xi : a = x0 < x1 < x2 < < xn = b






     

    Пусть отрезок [ a, b ] разбит на n равных частей точками xi: a = x0 < x1 < x2 < … < xn = b. Разность между соседними значениями аргумента постоянна, то есть шаг h = xi – xi-1 = const (i = 1, 2, …, n). Пусть на отрезке [ a, b ] определена функция y = f(x), значения которой в точках xi равны yi = f(xi).

    Первая производная функции в точке xi с помощью отношения конечных разностей выражается следующим образом:

    а) аппроксимация с помощью разностей вперед (правых разностей):

    ...xми на ок и.ные аппроксимации производных"

    , (1)

    б) аппроксимация с помощью разностей назад (левых разностей):

    ...xми на ок и.ные аппроксимации производных"

    , (2)

    в) аппроксимация с помощью центральных разностей:

    ...xми на ок и.ные аппроксимации производных"

    . (3)

    Аппроксимация производных с помощью центральных разностей представляет собой среднее арифметическое соотношений (1) и (2) в точках xi, i = 1, …, n-1. Соотношения (1) и (3) не позволяют вычислить производную в точке xn = b, а (2) и (3) - в точке x0 = а. Можно показать, что для функции y = f(x), имеющей непрерывную производную до второго порядка включительно, погрешность аппроксимации производных разностями вперед и назад имеет один и тот же порядок O(h), а погрешность аппроксимации центральными разностями (3) для функции y = f(x), имеющей непрерывную производную до третьего порядка включительно, имеет порядок O(h2).

    Приближенное значение производной второго порядка в точке xi выразим через значения функции yi-1 , yi, yi+1 . Для этого представим вторую производную с помощью правой разности:

    ,

    а производные первого порядка и - с помощью левых разностей:

    и окончательно получим

    . (4)

    Погрешность последней аппроксимации имеет порядок O(h2) для функции y = f(x), имеющей непрерывную производную до четвертого порядка включительно на отрезке [ a, b ]. Данная формула позволяет вычислять значения второй производной только во внутренних точках отрезка.

    Пусть функция y = f(x) определена на отрезке [ a, b ] и точках xi, i = 0, 1, …, n принимает значения yi = f(xi). Разность между соседними значениями аргумента xi постоянна и является шагом h = xi – xi-1, i = 1, …, n разбиения отрезка на n частей, причем a = x0, b = xn.

    Найдем аппроксимации 1-го и 2-го порядков с помощью значений функции yi в узловых точках xi с погрешностью одного и того же порядка в зависимости от шага h, причем этот порядок не ниже, чем достигаемый при конечно-разностной аппроксимации производных для того же шага. Для того, чтобы выразить значения производных через значения функции yi в узлах интерполяции xi, построим интерполяционный многочлен Лагранжа Lm(x) степени m, удовлетворяющий условиям:

    Lm(xk) = f(xk) = yk, k = i, i+1, …, i+m, i+m £ n.

    Многочлен Lm(x) интерполирует функцию f(x) на отрезке [ xi, xi+m ]. Дифференцируя многочлен Lm(x), получаем значения производных в точках xk, k = i, i+1, …, i+m.

    Если m = 1, то L1(x) – линейная функция, график которой проходит через точки (xi, yi) и (xi+1, yi+1 ). Тогда

    ,

    .

    Если m = 2, то график интерполяционного многочлена Лагранжа L2(x) – парабола, проходящая через три точки (xi, yi), (xi+1, yi+1 ), (xi+2, yi+2 ). Вычислим 1-ю и 2-ю производные многочлена L2(x) на отрезке [ xi, xi+2 ]:

    .

    Первая и вторая производные многочлена Лагранжа L2(x) в точках
    xi, xi+1, xi+2 являются приближениями соответствующих производных функции f(x) в этих точках:

    ,

    , (5)

    ,

    . (6)

    Если функция f(x) на отрезке [ xi, xi+2 ] имеет непрерывную производную до третьего порядка включительно, то справедливо представление функции в виде суммы:

    f(x) = L2 (x) + R2 (x), (7)

    где R2 (x) – остаточный член интерполяционной формулы, равный:

    .

    Дифференцируем (7):

    , (8)

    . (9)

    Здесь:

    (10)

    . (11)

    Погрешности при вычислении производных в точках xi, xi+1, xi+2 определяются из формул (10)-(11) следующими значениями остатков:

    , (12)

    . (13)

    Таким образом, равенства (12) показывают, что погрешности аппроксимации 1-й производной с помощью формул (5) имеют один и тот же порядок O(h2), и предлагается следующая рекомендация по их применению на отрезке [ a, b ] в точках xi, i = 0, 1, …, n при n ³ 2:

    ,

    , (14)

    .

    Оценка погрешности вычисления первой производной производится по формулам:

    . (15)

    Из равенств (13) следует, что приближение второй производной с помощью формулы (6) имеет различный порядок в зависимости от h в разных точках: в точках xi, xi+2 имеется погрешность порядка h, а в точке xi+1 порядок погрешности выше, так как .

    В случае интерполяции функции f(x), имеющейна отрезке [ a, b ] непрерывную производную до четвертого порядка включительно, можно получить погрешность интерполяции второй производной, имеющую порядок h2 и одинаковую во всех точках, с помощью многочлена Лагранжа третьей степени L3(x) по четырем узлам интерполяции xk, k = i, i+1, i+2, i+3. Аппроксимация второй производной в этом случае имеет вид:

    ,

    ,

    , (16)

    .

    При вычислении производной второго порядка на отрезке [ a, b ] в точках xi, i = 0, 1, …, n при n ³ 3 используются формулы:

    ,

    , (17)

    .

    Если функция f(x) на отрезке [ xi, xi+m ] имеет непрерывную производную до (m+1) -го порядка включительно, то справедливо представление функции в виде:

    f(x) = Lm (x)+ Rm (x),

    где Lm (x) – интерполяционный многочлен Лагранжа степени m, аппроксимирующий функцию f(x) по узлам интерполяции xk, k = i, i+1, …, i+m,
    Rm (x) – остаточный член интерполяционной формулы, причем:

    В частности, для интерполяционного многочлена Лагранжа L3 (x) степени 3 остаточный член R3 (x) имеет вид:

    . (18)

    Дважды продифференцируем R3 (x):

    (19)

    Погрешности при вычислении вторых производных в точках xi, xi+1, xi+2, xi+3 , определяются из формулы (19) следующими значениями остатков:

    (20)

    Тогда оценка погрешности вычисления второй производной по формулам (17) имеет вид:

    (21)






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.