Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Определение интеграла Римана и достаточные условия его существования






    Пусть -

    Определение: Разбиением отрезка [a, b] наз. множество точек Т={х ….х } удовлетворяющих неравенству a=x <..< x =b.

    [x , x ], [x , x ], ….[x , x ] называются отрезками разбиения., (k=0, 1…n-1)

    =max{ …. }- наз. мелкостью разбиения Т(диаметром, параметром)

    Определение: Разбиением с отмеченными точками наз. пара (Т, ), Т={х ….х } , , … } – это совокупность произвольных фиксированных точек [x , x ], k=0..n-1
    Определение: Пусть задана функция f и пусть (Т; разбиение с отмеченными точками [a, b] = наз. интегральной суммой Римана, построенной для разбиения (T, ) отрезка [a, b].Определение: Число J называется пределом суммы при , если для : (T, ) , J= Определение: Функция f: [a, b] C называется интегрируемой по Риману на отрезке [a, b], если существует конечный предел интегральных сумм при , этот предел наз. интегралом от функции f в пределах от a до b и обозначается .Определенный интеграл Римана имеет смысл и для функции вида f: [a, b] X, где Х любое векторное пространство.

    Необходимое условие интегрируемости функции Теорема: Если f: [a, b] С интегрируема по Риману на отрезке [a, b], то она ограничена на этом отрезке [a, b]. Доказательство: По определению имеет конечный предел J= она финально ограничена при : (T, ) .

    От противного: Пусть f неограниченна на всем отрезке [a, b], тогда она будет неограниченна на некотором отрезке [x , x ] разбиения T = =f() + (*)

    Пользуясь неограниченностью функции f на отрезке [x , x ] выберем значение из [x , x ] так что величина будет сколь угодно большой и тоже будет сколь угодноо большой. Пользуясь свойством, того что

    Из (*) |f()| -| | > получили противоречие






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.