Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Билет 18. Достаточные условия сходимости ряда Фурье
Достаточные условия сходимости ряда Фурье
Опр. Скалярное произведение ф-ции на опр-ся: 
Опр. Совокупность интегрируемых на функций наз-ся ортогональной на системой функций, если , ортонормированной 
Опр. Пусть сист. функций ортогональна на и − ЧП, тогда ФР называется ортогональным рядом по сист. , последовательность − посл-тью его коэффициентов, а − основным отрезком.
Опр. Рядом Фурье (РФ) ф-ции по сист. ф-ций , ортогональной на , называется отрогональный ряд , коэффициенты которого: , 
Теорема. Для коэффициенты РФ по ортогональной тригонометрической сист. выражаются: , 
Опр. Говорят, что ф-ия удовлетворяет условию Дирихле, если существует разбиение a=x0< x1< …< xn=b, такое, что " k = 0, 1,.., n-1 функция f½ (xk;; xk+1) – ограниченна, монотонна и непрерывна.
|