Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Необходимые условия экстремума в простейшей вариационной задаче. Уравнение Эйлера.
Теорема. Пусть - доставляет слабый локальный экстремум вариационной задачи (1). Функции , , непрерывны от нескольких переменных и . Тогда выполняется уравнение Эйлера: , где Опр. Ф-ции удовл. уравнению Эйлера называются экстремальными. Ф-ции, явл. допустимыми в задаче (1), т.е. и удовл краевым условиям называются допустимыми экстремалями задачи (1). Док-во. Обозн. Возьмём произвольную фиксированную функцию и рассмотрим ф-цию – т.экстремума ф-ии . Значение (по теореме Ферма), следовательно ф-ия -дифф. в точке 0. Значит рассмотрим интеграл от 1-ого слагаемого по t. Исходный интеграл . Док-но. Лемма Лагранжа. Пусть ф-ия и , тогда ф-ия . Док-во. Предположим, что в точке , () в силу непрерывности ф-ии при . Тогда выберем ф-ию положительную на отрезке . приходим к противоречию, значит . Д-но. Значит, по лемме Лагранжа , следовательно получим уравнение Эйлера. Док-но. Теорема. Пусть - достигает слабый локальный экстремум задачи (1). Ф-ии , , непрерывны в некоторой окрестности . Тогда ф-ия - непрерывно-дифференцируема и выполняется условие Эйлера, т.е. . Док-во. При док-ве данной теоремы используется теорема Дюбуа-Реймона. Теорема (лемма Дюбуа-Реймона). Пусть ф-ия и , тогда ф-ия и выполняется след уравнение: . Док-во. Возьмём ф-ию , такая что , а Выберем ф-ию , . Выбрав эту ф-ию специальным образом получим . Продифференцируем данную ф-ию получаем уравнение Эйлера. Док-но.
|