Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Выпуклые множества и выпуклые функции. Определения, критерии выпуклости.
Опр. Пусть X – векторное пространство. Множество называется выпуклым, если Т.е. содержит вместе с точками весь отрезок, соединяющий их. Опр. Пусть X – векторное пространство, – выпуклое. называется выпуклой, если выполняется следующее условие: т.е. если две точки графика функции соединить отрезком, то график функции будет лежать ниже этого отрезка. Для выпуклых функций вводят расширение, т.е. В этом случае будем учитывать следующие арифметические операции: Для выпуклых функций обычно задают индикаторную функцию, действующую следующим образом: Теорема. Подмножество называется выпуклым является выпуклой функцией. Опр. Пусть – выпуклое подмножество. называется надграфиком или эпиграфом. Теорема. называется выпуклой – выпуклое множество.
|