Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Алгоритм решения задач методом динамического программирования. Уравнение Беллмана.






    Динамическое программирование – метод решения задач оптимизации, характеризующиеся следующими этапами:

    0. Задача состоит в оптимизации функции f на множество M.

    1. Инвариантное погружение (составление семейства задач). Подбираем семейство задач: , каждая из которых состоит в поиске оптимального элемента с учетом ограничений:

    2. Вывод уравнения Беллмана. – решение задачи оптимизации , т.е. то значение x, при котором целевая функция принимает значение – функция Беллмана. А уравнением Беллмана называется уравнение, в которое входит функция Беллмана и значение – оптимальное значение.

    3. Решение семейства задач.

    3.1. Находим более простые задачи и решаем их.

    3.2 Находим значение функции Беллмана B(t) и , найденные на предыдущем этапе и подставляем в уравнение Беллмана. Получаем новое решение.

    Пункт 3.2 повторяем до тех пор, пока не найдем решение нашей задачи.

    Уравнение Беллмана:


    где - точка максимума.


     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.