Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Двойственность в задачах линейного программирования. Теорема двойственности.
Рассмотрим задачу линейного программирования в нормальной форме: или, в матричной записи: Задачей, двойственной к задаче выше(двойственной задачей)- называется задача линейного программирования от m переменных вида: или, в матричной записи: , где Теорема о двойственности: пусть х – допустимый план задачи линейного прог-я, у – допустимый план двойственной задачи: 1. 2. Если , то задача линейного прог-я не имеет допустимых планов, следовательно z=+бесконечность, следовательно двойственная задача не имеет допустимых планов. 3. Если х – допустимый план задачи линейного прог-я, у- допустимый план двойственной задачи и , то х – решение задачи линейного прог-я, у- решение двойственной задачи. Док-во: 1) Т.к. х – допустимый план, то . Оценим 2) – противоречие => Z не имеет допустимых планов. 3) − допустимый планы. . Пусть – решение задачи линейного прог-я. допустимый план двойственной задачи. – решение задачи => y - решение двойственной задачи. Док-но.
|