Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Некоторые обобщенные требования к выбору численных методов






 

Рассмотренные выше вопросы о погрешностях являются одними из важнейших моментов при выборе численного метода. В основе выбора численного метода лежат следующие соображения.

1) Можно утверждать, что нет ни одного метода, пригодного для решения всех задач одного и того же класса. Поэтому всегда стоит задача выбора численного метода (ЧМ), сообразуясь из конкретной технической задачи.

2) Численный метод можно считать удачно выбранным:

– если его погрешность в несколько раз меньше неустранимой погрешности, а погрешность округлений в несколько раз меньше погрешности метода;

– если неустранимая погрешность отсутствует, то погрешность метода должна быть несколько меньше заданной точности;

– завышенное снижение погрешности численного метода приводит не к повышению точности результатов, а к необоснованному увеличению объема вычислений.

3) Предпочтение отдается методу, который:

– реализуется с помощью меньшего числа действий;

– требует меньшего объема памяти ЭВМ;

– логически является более простым.

Перечисленные условия обычно противоречат друг другу, поэтому часто при выборе численного метода приходится соблюдать компромисс между ними.

4) Численный метод должен обладать устойчивостью и сходимостью.

5) По возможности нужно прибегать к существующему программному обеспечению ЭВМ для решения типовых задач.

6) Нужно помнить всегда, что ЭВМ многократно увеличивает некомпетентность Исполнителя технической задачи.


Раздел 2. Решение систем линейных алгебраических уравнений

 

Основные понятия и определения

 

Системы линейных алгебраических уравнений (СЛАУ) являются важной математической моделью линейной алгебры. На их базе ставятся такие практические математические задачи, как:

– непосредственное решение линейных систем;

– вычисление определителей матриц;

– вычисление элементов обратных матриц;

– определение собственных значений и собственных векторов матриц.

Решение линейных систем является одной из самых распространенных задач вычислительной математики. К их решению сводятся многочисленные практические задачи нелинейного характера, решения дифференциальных уравнений и др.

Вторая и третья задачи являются также и компонентами технологии решения самих линейных систем.

Обычно СЛАУ n -го порядка записывается в виде

или в развернутой форме

(1)

или в векторной форме

, (2)

где

; ; .

В соотношениях (2):

А называется основной матрицей системы с n 2 элементами;

= (x 1, x 2,..., xn)Т – вектор-столбец неизвестных;

= (b 1, b 2,..., bn)Т – вектор-столбец свободных членов.

Определителем (детерминантом – det) матрицы А n -го порядка называется число D (det A), равное

.

Здесь индексы a, b,..., w пробегают все возможные n! перестановок номеров 1, 2,..., n; k – число инверсий в данной перестановке.

Первоначальным при решении СЛАУ (1) является анализ вида исходной матрицы А и вектора-столбца свободных членов в (2).

Если все свободные члены равны нулю, т.е. = 0, то система называется однородной. Если же ¹ 0, или хотя бы одно bi ¹ 0 (), то система (2) называется неоднородной.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель | A | ¹ 0. При этом система (1) имеет единственное решение.

При | A | = 0 матрица А называется вырожденной, или особенной, а система (1) не имеет решения, либо имеет бесконечное множество решений.

Если | A |» 0 система (1) называется плохо обусловленной, т.е. решение очень чувствительно к изменению коэффициентов системы.

В ряде случаев получаются системы уравнений с матрицами специальных видов: диагональные, трехдиагональные (частный случай ленточных), симметричные (аij = aji), единичные (частный случай диагональной), треугольные и др.

Решение системы (2) заключается в отыскании вектора-столбца = (x 1, x 2,..., xn)Т, который обращает каждое уравнение системы в тождество.

Существуют две величины, характеризующие степень отклонения полученного решения от точного, которые появляются в связи с округлением и ограниченностью разрядной сетки ЭВМ, – погрешность e и «невязка» r:

(3)

где – вектор решения. Как правило, значения вектора – неизвестны.

Доказано, что если e» 0, то и r = 0. Обратное утверждение не всегда верно. Однако если система не плохо обусловлена, для оценки точности решения используют невязку r.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.