Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Метод Гаусса. Этот метод является наиболее распространенным методом решения СЛАУ






    Этот метод является наиболее распространенным методом решения СЛАУ. В его основе лежит идея последовательного исключения неизвестных, в основном, приводящая исходную систему к треугольному виду, в котором все коэффициенты ниже главной диагонали равны нулю. Существуют различные вычислительные схемы, реализующие этот метод. Наибольшее распространение имеют схемы с выбором главного элемента либо по строке, либо по столбцу, либо по всей матрице. С точки зрения простоты реализации, хотя и с потерей точности, перед этими схемами целесообразней применять так называемую схему единственного деления. Рассмотрим ее суть.

    Посредством первого уравнения системы (1) исключается х 1 из последующих уравнений. Далее посредством второго уравнения исключается х 2 из последующих уравнений и т.д. Этот процесс называется прямым ходом Гаусса. Исключение неизвестных повторяется до тех пор, пока в левой части последнего n -го уравнения не останется одно неизвестное хn

    a ¢ nnxn = b ¢, (5)

    где a ¢ nn и b ¢ – коэффициенты, полученные в результате линейных (эквивалентных) преобразований.

    Прямой ход реализуется по формулам

    а * mi = ami;

    b * m = bm (6)

    где m – номер уравнения, из которого исключается xk;

    k – номер неизвестного, которое исключается из оставшихся (nk) уравнений, а также обозначает номер уравнения, с помощью которого исключается xk;

    i – номер столбца исходной матрицы;

    akk – главный (ведущий) элемент матрицы.

    Во время счета необходимо следить, чтобы akk ¹ 0. В противном случае прибегают к перестановке строк матрицы.

    Обратный ход метода Гаусса состоит в последовательном вычислении xn, xn –1,..., x 1, начиная с (5) по алгоритму

    xn = b ¢ / a ¢ nn; . (7)

    Точность полученного решения оценивается посредством «невязки» (3). В векторе невязки (r 1, r 2,..., rn)Т отыскивается максимальный элемент и сравнивается с заданной точностью e. Приемлемое решение будет, если r max < e. В противном случае следует применить схему уточнения решения.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.