![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Правила записи приближенных чисел
Запись приближенных чисел должна подчиняться правилам, связанным с понятиями верных значащих цифр. Любое десятичное число х = ±a n a n– 1... a1 a0 a–1 a–2... a– m представимо в виде х = ±a n 10 n + a n– 110 n –1 +... a110 + a0 + a–110–1 + a–210–2 +... + a– m 10 –m, где a i – цифры числа, 10 i – их позиция (± i). Рассмотрим пример: 1358, 7604 = 1× 103 + 3× 102 + 5× 10 + 8 + 7× 10–1 + 6× 10–2 + 0× 10–3 + 4× 10–4. Первая слева отличная от нуля цифра числа х и все расположенные справа от нее цифры называются значащими, т.е. числа 25, 047 и –0, 00250 имеют соответственно 5 и 3 значащих цифр. Последнее число может быть записано –2, 50× 10-3. Значащая цифра a i называется верной (в узком смысле), если абсолютная погрешность числа не превосходит 1/2 единицы разряда, соответствующего этой цифре, т.е. D а £ 1/2× 10 i, где 10 i указывает номер разряда (± i). Пусть х * = 12, 396 (х * приближение х) и известно D х * = 0, 03. Согласно определению здесь: D х * > 1/2× 10–3; D х * > 1/2× 10–2 и D х * < 1/2× 10–1. Значит, верными знаками будут 1, 2, 3, а 9 и 6 сомнительные. Пусть х * = 0, 037862 и D х * = 0, 07. Здесь D х * > 1/2× 10–1. Значит все значащие цифры сомнительные. Если число записано с указанием его абсолютной погрешности S = 20, 7428; D S = 0, 0926, то число верных знаков можно отсчитывать от первой значащей цифры числа до первой значащей цифры его абсолютной погрешности. Здесь верные цифры 2, 0, 7. Существуют определенные соглашения при оперировании понятиями верных значащих цифр. 1) Если число имеет лишь верные цифры, то и его округление имеет также только верные цифры. 2) Совпадение приближенного значения, имеющего все верные значащие цифры, с точным значением не обязательно. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение 3) Абсолютные и относительные погрешности числа принято округлять в большую сторону, так как при округлениях границы неопределенности числа, как правило, увеличиваются. 4) При изменении формы записи числа количество значащих цифр не должно меняться, т.е. необходимо соблюдать равносильность преобразований, например 7500 = 0, 7500× 104; 0, 110× 102 = 11, 0; – равносильные преобразования; 7500 = 0, 75× 104; 0, 110× 102 = 11; – неравносильные преобразования. Здесь два нуля в первом и один ноль во втором выражениях переведены в разряд незначащих цифр, поэтому следует использовать записи 7500 = 0, 7500× 104 и 0, 110× 102 = 11, 0. 5) При вычислениях желательно сохранять такое количество значащих цифр, чтобы их число не превышало числа верных цифр более чем на одну – две единицы. 6) Верные значащие цифры числа характеризуют ориентировочно относительную погрешность по схеме: одна верная цифра 10%, две – 1%, три – 0, 1% и т.д. Верные значащие цифры после запятой характеризуют абсолютную погрешность или в «узком» или в «широком» смысле. Нормализованная форма числа. Приближенные числа принято записывать таким образом, чтобы все цифры числа, кроме нулей впереди, если они есть, были значащими и верными цифрами. Обычную форму записи числа, рассмотренную выше, называют записью с фиксированной точкой, а числа 0, 63750× 106; 637, 50× 103 и 6, 3750× 105 записаны в форме с плавающей точкой. Запись числа с плавающей точкой, как следует из примера, не является однозначной. Для устранения этой неоднозначности принято первый множитель брать меньше единицы, и он должен состоять только из значащих цифр (кроме нуля целых), т.е. первая цифра после запятой всегда отлична от нуля. Такая форма записи числа называется нормализованной. В данном примере ею является запись 0, 63750× 106, а для числа –0, 00384 нормализованная форма –0, 384× 10–2. Итак, запись числа х в нормализованной форме имеет вид х = х 0× 10 р; где 0, 1 £ | х 0 | < 1. Число х 0 называется мантиссой числа х, а число р – его порядком. Например, для числа 620 = 0, 620× 103 мантиссой является 0, 620, а порядком – число 3. Заметим, что в этой записи все цифры после запятой верные.
|