![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Этапы решения технических задач на ЭВМ
Реальные инженерные и физические задачи во всех областях науки и техники обычно решаются посредством использования двух подходов: – физического эксперимента; – предварительного анализа конструкций, схем, явлений с целью выбора каких-то их оптимальных параметров. Первый подход связан с большими и не всегда оправданными затратами материальных и временных ресурсов. Второй подход связан с математическим моделированием, в основе которого заложены знания фундаментальных законов природы и построение на их основе математических моделей для произвольных технических и научных задач. Математические модели представляют собой упрощенное описание исследуемого явления с помощью математических символов и операций над ними. Математические модели разрабатываются с соблюдением корректности и адекватности по отношению к реальным процессам, но, как правило, с учетом простоты их технической реализации. Практика показывает, что возникающие и истребованные технические решения во многом однозначны, что определяет ограниченное число существенно полезных математических моделей, извлекаемых из стандартного справочника «Курс высшей математики». К примеру, из арсенала этих моделей можно назвать такие как линейные и нелинейные уравнения, системы линейных и нелинейных уравнений, дифференциальные уравнения (ДУ), разновидности интегралов, функциональные зависимости, «целевые» функции для решения задач оптимизации и др. При математическом моделировании важным моментом является первоначальная математическая постановка задачи. Она предполагает описание математической модели и указания цели ее исследования. Для одной и той же математической модели могут быть сформулированы и решены различные математические задачи. Например, для наиболее распространенной модели, такой как функциональная зависимость y = f (x) могут быть сформулированы следующие математические задачи: Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение 1) найти экстремальное значение функции f (x): max f (x) или min f (x); 2) найти значение x, при котором f (x) = 0; 3) найти значение производной f ' (x), значение интеграла Бурное развитие вычислительной техники выдвинуло на передний план при решении практических инженерных и научных задач вычислительную математику и программирование. Вычислительная математика изучает построение и исследование численных методов решения математических задач посредством реализации соответствующих математических моделей. Программирование обеспечивает техническую реализацию их. Обобщенную схему математического моделирования можно представить следующим образом:
При реализации данного цикла требуют пристального внимания все его компоненты. Заключительным его этапом является получение численного результата и сопоставление его с целевой установкой и, как правило, для достижения желаемого, или приемлемого результата, всегда возникает необходимость изменения или математической модели, или вычислительного метода, или алгоритма, или программы. Следует подчеркнуть важность и таких этапов данной технологии решения задач на ЭВМ как проведение расчетов и анализ результатов. (А именно, подготовка исходных данных, обоснование выбора вычислительного метода, корректность и точность решения). Важным моментом является также экономичность выбора: способа решения задачи, численного метода, модели ЭВМ, вычислительной среды.
|