Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Этапы решения технических задач на ЭВМ
Реальные инженерные и физические задачи во всех областях науки и техники обычно решаются посредством использования двух подходов: – физического эксперимента; – предварительного анализа конструкций, схем, явлений с целью выбора каких-то их оптимальных параметров. Первый подход связан с большими и не всегда оправданными затратами материальных и временных ресурсов. Второй подход связан с математическим моделированием, в основе которого заложены знания фундаментальных законов природы и построение на их основе математических моделей для произвольных технических и научных задач. Математические модели представляют собой упрощенное описание исследуемого явления с помощью математических символов и операций над ними. Математические модели разрабатываются с соблюдением корректности и адекватности по отношению к реальным процессам, но, как правило, с учетом простоты их технической реализации. Практика показывает, что возникающие и истребованные технические решения во многом однозначны, что определяет ограниченное число существенно полезных математических моделей, извлекаемых из стандартного справочника «Курс высшей математики». К примеру, из арсенала этих моделей можно назвать такие как линейные и нелинейные уравнения, системы линейных и нелинейных уравнений, дифференциальные уравнения (ДУ), разновидности интегралов, функциональные зависимости, «целевые» функции для решения задач оптимизации и др. При математическом моделировании важным моментом является первоначальная математическая постановка задачи. Она предполагает описание математической модели и указания цели ее исследования. Для одной и той же математической модели могут быть сформулированы и решены различные математические задачи. Например, для наиболее распространенной модели, такой как функциональная зависимость y = f (x) могут быть сформулированы следующие математические задачи: 1) найти экстремальное значение функции f (x): max f (x) или min f (x); 2) найти значение x, при котором f (x) = 0; 3) найти значение производной f ' (x), значение интеграла и т.д. Бурное развитие вычислительной техники выдвинуло на передний план при решении практических инженерных и научных задач вычислительную математику и программирование. Вычислительная математика изучает построение и исследование численных методов решения математических задач посредством реализации соответствующих математических моделей. Программирование обеспечивает техническую реализацию их. Обобщенную схему математического моделирования можно представить следующим образом:
При реализации данного цикла требуют пристального внимания все его компоненты. Заключительным его этапом является получение численного результата и сопоставление его с целевой установкой и, как правило, для достижения желаемого, или приемлемого результата, всегда возникает необходимость изменения или математической модели, или вычислительного метода, или алгоритма, или программы. Следует подчеркнуть важность и таких этапов данной технологии решения задач на ЭВМ как проведение расчетов и анализ результатов. (А именно, подготовка исходных данных, обоснование выбора вычислительного метода, корректность и точность решения). Важным моментом является также экономичность выбора: способа решения задачи, численного метода, модели ЭВМ, вычислительной среды.
|